Somatic intronic TP53 c.375+5G mutations are a recurrent but under-recognized mode of TP53 inactivation

被引:7
作者
Chui, M. Herman [1 ]
Yang, Ciyu [1 ]
Mehta, Nikita [1 ]
Rai, Vikas [1 ]
Zehir, Ahmet [1 ]
Boroujeni, Amir Momeni [1 ]
Ladanyi, Marc [1 ]
Mandelker, Diana [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
关键词
p53; TP53; intronic mutation; pathogenic variant; cancer;
D O I
10.1002/cjp2.242
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
TP53 is one of the most ubiquitously altered genes in human cancer. The biological impact of rare variants, particularly those located within noncoding regions, remains poorly understood. From interrogation of clinical massively parallel sequencing data from over 55,000 tumors, which included 23,330 tumors with known TP53 mutations, TP53 intron 4 nucleotide substitutions at position c.375+5G were identified in 45 tumors (0.2% of TP53-mutated cancers), comprising cancers of different organ sites. Loss-of-heterozygosity or a second-hit somatic TP53 mutation was observed in 34 of 40 (85%) informative cases. RT-PCR analysis showed the c.375+5G>T variant to be associated with aberrantly spliced TP53 mRNA transcripts with concomitant loss of the normal transcript. Immunohistochemical staining for p53 was performed on a representative subset of tumors with TP53 c.375+5G variants (n = 14), all of which showed loss of protein expression (100%; n = 13 complete loss, n = 1 subclonal loss). Our data are consistent with classification of TP53 c.375+5G variants as deleterious intronic mutations that interfere with proper mRNA splicing, ultimately resulting in loss of expression of functional p53 protein. The clinical scenario of a tumor with loss of p53 immunohistochemical staining, yet lacking a detectable TP53 exonic mutation, should therefore prompt consideration of splice-altering intronic variants.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 13 条
[1]   Splicing mutations in human genetic disorders: examples, detection, and confirmation (vol 59, pg 253, 2018) [J].
Abramowicz, Anna ;
Gos, Monika .
JOURNAL OF APPLIED GENETICS, 2019, 60 (02) :231-231
[2]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[3]   TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data [J].
Bouaoun, Liacine ;
Sonkin, Dmitriy ;
Ardin, Maude ;
Hollstein, Monica ;
Byrnes, Graham ;
Zavadil, Jiri ;
Olivier, Magali .
HUMAN MUTATION, 2016, 37 (09) :865-876
[4]   Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology [J].
Cheng, Donavan T. ;
Mitchell, Talia N. ;
Zehir, Ahmet ;
Shah, Ronak H. ;
Benayed, Ryma ;
Syed, Aijazuddin ;
Chandramohan, Raghu ;
Liu, Zhen Yu ;
Won, Helen H. ;
Scott, Sasinya N. ;
Brannon, A. Rose ;
O'Reilly, Catherine ;
Sadowska, Justyna ;
Casanova, Jacklyn ;
Yannes, Angela ;
Hechtman, Jaclyn F. ;
Yao, Jinjuan ;
Song, Wei ;
Ross, Dara S. ;
Oultache, Alifya ;
Dogan, Snjezana ;
Borsu, Laetitia ;
Hameed, Meera ;
Nafa, Khedoudja ;
Arcila, Maria E. ;
Ladanyi, Marc ;
Berger, Michael F. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (03) :251-264
[5]   Characterization ofTP53-wildtype tubo-ovarian high-grade serous carcinomas: rare exceptions to the binary classification of ovarian serous carcinoma [J].
Chui, M. Herman ;
Boroujeni, Amir Momeni ;
Mandelker, Diana ;
Ladanyi, Marc ;
Soslow, Robert A. .
MODERN PATHOLOGY, 2021, 34 (02) :490-501
[6]   Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas [J].
Donehower, Lawrence A. ;
Soussi, Thierry ;
Korkut, Anil ;
Liu, Yuexin ;
Schultz, Andre ;
Cardenas, Maria ;
Li, Xubin ;
Babur, Ozgun ;
Hsu, Teng-Kuei ;
Lichtarge, Olivier ;
Weinstein, John N. ;
Akbani, Rehan ;
Wheeler, David A. .
CELL REPORTS, 2019, 28 (05) :1370-+
[7]   Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma [J].
Kobel, Martin ;
Piskorz, Anna M. ;
Lee, Sandra ;
Lui, Shuhong ;
LePage, Cecile ;
Marass, Francesco ;
Rosenfeld, Nitzan ;
Masson, Anne-Marie Mes ;
Brenton, James D. .
JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2016, 2 (04) :247-258
[8]   Whole Exome Sequencing Reveals Novel PHEX Splice Site Mutations in Patients with Hypophosphatemic Rickets [J].
Ma, Sara L. ;
Vega-Warner, Virginia ;
Gillies, Christopher ;
Sampson, Matthew G. ;
Kher, Vijay ;
Sethi, Sidharth K. ;
Otto, Edgar A. .
PLOS ONE, 2015, 10 (06)
[9]   Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring MET Mutations Causing Exon 14 Skipping [J].
Paik, Paul K. ;
Drilon, Alexander ;
Fan, Pang-Dian ;
Yu, Helena ;
Rekhtman, Natasha ;
Ginsberg, Michelle S. ;
Borsu, Laetitia ;
Schultz, Nikolaus ;
Berger, Michael F. ;
Rudin, Charles M. ;
Ladanyi, Marc .
CANCER DISCOVERY, 2015, 5 (08) :842-849
[10]   FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing [J].
Shen, Ronglai ;
Seshan, Venkatraman E. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (16)