Exciton photoluminescence and benign defect complex formation in zinc tin nitride

被引:38
作者
Fioretti, Angela N. [1 ,2 ]
Pan, Jie [1 ]
Ortiz, Brenden R. [2 ]
Melamed, Celeste L. [1 ,2 ]
Dippo, Patricia C. [1 ]
Schelhas, Laura T. [3 ]
Perkins, John D. [1 ]
Kuciauskas, Darius [1 ]
Lany, Stephan [1 ]
Zakutayev, Andriy [1 ]
Toberer, Eric S. [1 ,2 ]
Tamboli, Adele C. [1 ,2 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Golden, CO 80401 USA
[3] SLAC Natl Accelerator Lab, Appl Energy Programs, Menlo Pk, CA 94025 USA
关键词
CUIN(GA)SE-2 THIN-FILMS; TEMPERATURE-DEPENDENCE; STABILITY; PHYSICS; OXIDE; GAP;
D O I
10.1039/c8mh00415c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging photovoltaic materials need to prove their viability by demonstrating excellent electronic properties. In ternary and multinary semiconductors, disorder and off-stoichiometry often cause defects that limit the potential for high-efficiency solar cells. Here we report on Zn-rich ZnSnN2 (Zn/(Zn + Sn) = 0.67) photoluminescence, high-resolution X-ray diffraction, and electronic structure calculations based on Monte-Carlo structural models. The mutual compensation of Zn excess and O incorporation affords a desirable reduction of the otherwise degenerate n-type doping, but also leads to a strongly off-stoichiometric and disordered atomic structure. It is therefore remarkable that we observe only near-edge photoluminescence from well-resolved excitons and shallow donors and acceptors. Based on first principles calculations, this result is explained by the mutual passivation of Zn-Sn and O-N defects that renders both electronically benign. The calculated bandgaps range between 1.4 and 1.8 eV, depending on the degree of non-equilibrium disorder. The experimentally determined value of 1.5 eV in post-deposition annealed samples falls within this interval, indicating that further bandgap engineering by disorder control should be feasible via appropriate annealing protocols.
引用
收藏
页码:823 / 830
页数:9
相关论文
共 44 条
[1]   Thin film synthesis and properties of copper nitride, a metastable semiconductor [J].
Caskey, Christopher M. ;
Richards, Ryan M. ;
Ginley, David S. ;
Zakutayev, Andriy .
MATERIALS HORIZONS, 2014, 1 (04) :424-430
[2]   Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights [J].
Chen, Shiyou ;
Narang, Prineha ;
Atwater, Harry A. ;
Wang, Lin-Wang .
ADVANCED MATERIALS, 2014, 26 (02) :311-315
[3]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[4]  
Dirnstorfer I, 1998, PHYS STATUS SOLIDI A, V168, P163, DOI 10.1002/(SICI)1521-396X(199807)168:1<163::AID-PSSA163>3.0.CO
[5]  
2-T
[6]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[7]   Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites [J].
Fan, Zhen ;
Sun, Kuan ;
Wang, John .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (37) :18809-18828
[8]   Growth, disorder, and physical properties of ZnSnN2 [J].
Feldberg, N. ;
Aldous, J. D. ;
Linhart, W. M. ;
Phillips, L. J. ;
Durose, K. ;
Stampe, P. A. ;
Kennedy, R. J. ;
Scanlon, D. O. ;
Vardar, G. ;
Field, R. L., III ;
Jen, T. Y. ;
Goldman, R. S. ;
Veal, T. D. ;
Durbin, S. M. .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[9]  
Fioretti A.N., 2015, 42nd IEEE Photovoltaic Specialist Conference (PVSC), P1
[10]   Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors [J].
Fioretti, Angela N. ;
Stokes, Adam ;
Young, Matthew R. ;
Gorman, Brian ;
Toberer, Eric S. ;
Tamboli, Adele C. ;
Zakutayev, Andriy .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (03)