Bot stamina: examining the influence and staying power of bots in online social networks

被引:24
作者
Schuchard, Ross [1 ]
Crooks, Andrew T. [1 ,2 ]
Stefanidis, Anthony [2 ,3 ]
Croitoru, Arie [3 ]
机构
[1] George Mason Univ, Dept Computat & Data Sci, Computat Social Sci Program, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Criminal Invest & Network Anal Ctr, Fairfax, VA 22030 USA
关键词
Social bot analysis; Computational social science; Social network analysis; Online social networks; FAKE NEWS; TWITTER; SCIENCE; MEDIA; TWEET;
D O I
10.1007/s41109-019-0164-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents a novel approach to expand the emergent area of social bot research. We employ a methodological framework that aggregates and fuses data from multiple global Twitter conversations with an available bot detection platform and ultimately classifies the relative importance and persistence of social bots in online social networks (OSNs). In testing this methodology across three major global event OSN conversations in 2016, we confirmed the hyper-social nature of bots: suspected social bot accounts make far more attempts on average than social media accounts attributed to human users to initiate contact with other accounts via retweets. Social network analysis centrality measurements discover that social bots, while comprising less than 0.3% of the total corpus user population, display a disproportionately high level of structural network influence by ranking particularly high among the top users across multiple centrality measures within the OSN conversations of interest. Further, we show that social bots exhibit temporal persistence in centrality ranking density when examining these same OSN conversations over time.
引用
收藏
页数:23
相关论文
共 65 条
[41]  
Kwak HG, 2010, INT CONF ADV COMMUN, P591
[42]   The science of fake news [J].
Lazer, David M. J. ;
Baum, Matthew A. ;
Benkler, Yochai ;
Berinsky, Adam J. ;
Greenhill, Kelly M. ;
Menczer, Filippo ;
Metzger, Miriam J. ;
Nyhan, Brendan ;
Pennycook, Gordon ;
Rothschild, David ;
Schudson, Michael ;
Sloman, Steven A. ;
Sunstein, Cass R. ;
Thorson, Emily A. ;
Watts, Duncan J. ;
Zittrain, Jonathan L. .
SCIENCE, 2018, 359 (6380) :1094-1096
[43]  
Mazza M., 2019, P WEBSCI 19, P183
[44]  
Mitchell Amy, 2018, Americans Still Prefer Watching to Reading the News-and Mostly Still through Television
[45]   Evidence of complex contagion of information in social media: An experiment using Twitter bots [J].
Monsted, Bjarke ;
Sapiezynski, Piotr ;
Ferrara, Emilio ;
Lehmann, Sune .
PLOS ONE, 2017, 12 (09)
[46]  
Morstatter F, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P533, DOI 10.1109/ASONAM.2016.7752287
[47]  
Murthy D, 2016, INT J COMMUN-US, V10, P4952
[48]   Learning to Rank Social Bots [J].
Perna, Diego ;
Tagarelli, Andrea .
HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, 2018, :183-191
[49]   Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks [J].
Piraveenan, Mahendra ;
Prokopenko, Mikhail ;
Hossain, Liaquat .
PLOS ONE, 2013, 8 (01)
[50]   Forecasting the onset and course of mental illness with Twitter data [J].
Reece, Andrew G. ;
Reagan, Andrew J. ;
Lix, Katharina L. M. ;
Dodds, Peter Sheridan ;
Danforth, Christopher M. ;
Langer, Ellen J. .
SCIENTIFIC REPORTS, 2017, 7