PERCEPTION INSPIRED DEEP NEURAL NETWORKS FOR SPECTRAL SNAPSHOT COMPRESSIVE IMAGING

被引:6
作者
Meng, Ziyi [1 ]
Yuan, Xin [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Westlake Univ, Hangzhong 310024, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Compressive sensing; spectral compressive imaging; coded aperture snapshot spectral imaging (CASSI); deep learning; perceptual loss;
D O I
10.1109/ICIP42928.2021.9506316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the inverse problem of coded aperture snapshot spectral imaging (CASSI), which captures the spatio-spectral data-cube using a snapshot 2D measurement and reconstructs the 3D hyperspectral images using algorithms. Recent advances of deep learning have boosted the image quality of the reconstructed hyperspectral images significantly, and this leads to an end-to-end real-time capture and reconstruction system. However, the network design for CASSI reconstruction is still at the incubation stage and usually an off-the-shelf network is employed and re-purposed. In this work, from a different perspective, inspired by the fact that most existing hyperspectral images are still in the visible bandwidth, we introduce the perceptual loss into the deep neural network for CASSI reconstruction. Extensive results on both simulation and real data demonstrate that with this small change, the reconstructed image quality can be improved dramatically using the same network.
引用
收藏
页码:2813 / 2817
页数:5
相关论文
共 30 条
[1]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[2]   High-Quality Hyperspectral Reconstruction Using a Spectral Prior [J].
Choi, Inchang ;
Jeon, Daniel S. ;
Nam, Giljoo ;
Gutierrez, Diego ;
Kim, Min H. .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06)
[3]   Single-shot compressive spectral imaging with a dual-disperser architecture [J].
Gehm, M. E. ;
John, R. ;
Brady, D. J. ;
Willett, R. M. ;
Schulz, T. J. .
OPTICS EXPRESS, 2007, 15 (21) :14013-14027
[4]   Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [J].
Huang, Tao ;
Dong, Weisheng ;
Yuan, Xin ;
Wu, Jinjian ;
Shi, Guangming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :16211-16220
[5]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[6]  
Kingma DP, 2015, C TRACK P
[7]   Coded aperture compressive temporal imaging [J].
Llull, Patrick ;
Liao, Xuejun ;
Yuan, Xin ;
Yang, Jianbo ;
Kittle, David ;
Carin, Lawrence ;
Sapiro, Guillermo ;
Brady, David J. .
OPTICS EXPRESS, 2013, 21 (09) :10526-10545
[8]   LED-based compressive spectral- temporal imaging [J].
Ma, Xiao ;
Yuan, Xin ;
Fu, Chen ;
Arce, Gonzalo R. .
OPTICS EXPRESS, 2021, 29 (07) :10698-10715
[9]  
Meng Z., 2020, ARXIV 2012 08364
[10]   Snapshot multispectral endomicroscopy [J].
Meng, Ziyi ;
Qiao, Mu ;
Ma, Jiawei ;
Yu, Zhenming ;
Xu, Kun ;
Yuan, Xin .
OPTICS LETTERS, 2020, 45 (14) :3893-3896