Spatio-temporal modeling of residential sales data

被引:61
作者
Gelfand, AE [1 ]
Ghosh, SK
Knight, JR
Sirmans, CF
机构
[1] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Pacific, Eberhardt Sch Business, Stockton, CA 95211 USA
[4] Univ Connecticut, Ctr Real Estate, Storrs, CT 06269 USA
关键词
conditional autoregressive priors; forecasting; hedonic price model; hierarchical models; model choice; model validation; sampling-based fitting;
D O I
10.2307/1392507
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article focuses on the location, time, and spatio-temporal components associated with suitably aggregated data to improve prediction of individual asset values. Such effects are introduced in the context of hierarchical models, which we find more natural than attempting to model covariance structure. Indeed, our cross-sectional database, a sample of 7,936 transactions for 49 subdivisions over a 10-year period in Baton Rouge, Louisiana, precludes covariance modeling. A wide range of models arises, each fitted using sampling-based methods because likelihood-based fitting may not be possible. Choosing among an array of nonnested models is carried out using a posterior predictive criterion. In addition, one year of data is held out for model validation. A thorough analysis of the data incorporating all of the aforementioned issues is presented.
引用
收藏
页码:312 / 321
页数:10
相关论文
共 50 条
[41]   Bayesian Inference of Spatio-Temporal Changes of Arctic Sea Ice [J].
Zhang, Bohai ;
Cressie, Noel .
BAYESIAN ANALYSIS, 2020, 15 (02) :605-631
[42]   DMSTG: Dynamic Multiview Spatio-Temporal Networks for Traffic Forecasting [J].
Diao, Zulong ;
Wang, Xin ;
Zhang, Dafang ;
Xie, Gaogang ;
Chen, Jianguo ;
Pei, Changhua ;
Meng, Xuying ;
Xie, Kun ;
Zhang, Guangxing .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) :6865-6880
[43]   Advances and Trends in Bayesian Spatio-Temporal Statistical Methods and Applications [J].
Li, Junming ;
Hu, Yaxuan ;
Wang, Nannan ;
Wang, Siyaqi ;
Wang, Ruolan ;
Lyu, Lin ;
Fang, Ziqing .
Journal of Geo-Information Science, 2025, 27 (07) :1501-1519
[44]   Spatio-temporal modelling of temperature time series: A comparative study [J].
Rao, TS ;
Antunes, AMC .
TIME SERIES ANALYSIS AND APPLICATIONS TO GEOPHYSICAL SYSTEMS, 2004, :123-150
[45]   Zero-inflated spatio-temporal models for disease mapping [J].
Torabi, Mahmoud .
BIOMETRICAL JOURNAL, 2017, 59 (03) :430-444
[46]   MFNet: The Spatio-Temporal Network for Meteorological Forecasting With Architecture Search [J].
Zhang, Xinbang ;
Jin, Qizhao ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[47]   Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting [J].
Gong, Yongshun ;
He, Tiantian ;
Chen, Meng ;
Wang, Bin ;
Nie, Liqiang ;
Yin, Yilong .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) :4260-4274
[48]   Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power [J].
Tascikaraoglu, Akin ;
Sanandaji, Borhan M. ;
Chicco, Gianfranco ;
Cocina, Valeria ;
Spertino, Filippo ;
Erdinc, Ozan ;
Paterakis, Nikolaos G. ;
Catalao, Joao P. S. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (03) :1295-1305
[49]   Time Series, Hidden Variables and Spatio-Temporal Ordinality Networks [J].
Thiruvengadam, Sudharsan ;
Tan, Jei Shian ;
Miller, Karol .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (03)
[50]   Forecasting Spatio-Temporal Variation in Residential Burglary with the Integrated Laplace Approximation Framework: Effects of Crime Generators, Street Networks, and Prior Crimes [J].
Maria Mahfoud ;
Wim Bernasco ;
Sandjai Bhulai ;
Rob van der Mei .
Journal of Quantitative Criminology, 2021, 37 :835-862