List vertex arboricity of planar graphs without 5-cycles intersecting with 6-cycles

被引:0
作者
Yang, Yanping [1 ]
Wang, Yang [1 ]
Liu, Juan [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
关键词
planar graph; list vertex arboricity; intersecting cycles; TOROIDAL GRAPHS;
D O I
10.3934/math.2021567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic. The list vertex arboricity a(l)(G) is the list version of this concept. In this paper, we prove that if G is a planar graph without 5-cycles intersecting with 6-cycles, then a(l)(G) <= 2.
引用
收藏
页码:9757 / 9769
页数:13
相关论文
共 14 条
  • [11] A note on the list vertex arboricity of toroidal graphs
    Wang, Yiqiao
    Chen, Min
    Wang, Weifan
    [J]. DISCRETE MATHEMATICS, 2018, 341 (12) : 3344 - 3347
  • [12] On the vertex arboricity of planar graphs of diameter two
    Yang, Aifeng
    Yuan, Jinjiang
    [J]. DISCRETE MATHEMATICS, 2007, 307 (19-20) : 2438 - 2447
  • [13] Yang Y. P., ADV MATH, V50, P335
  • [14] Zhang H, 2016, B IRAN MATH SOC, V42, P1293