Analytical properties of extended Hermite-Bernoulli polynomials

被引:1
作者
Khan, Nabiullah [1 ]
Ahmad, Naeem [2 ]
Ghayasuddin, Mohd [3 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
[2] Jouf Univ, Coll Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[3] Dept Math, Integral Univ Campus, Shahjahanpur 242001, India
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2020年 / 20卷 / 04期
关键词
Hermite polynomials; Bernoulli polynomials; Hermite-Bernoulli polynomials; Mittag-Leffler function;
D O I
10.22436/jmcs.020.04.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article aims to present a new family of extended Hermite-Bernoulli polynomials by making use of the Mittag-Leffler function. We also derive some analytical properties of our proposed extended Hermite-Bernoulli polynomials systematically. Furthermore, some concluding remarks of our present investigation are also pointed out in the last section.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 17 条
  • [1] Andrews L. C., 1985, Special functions for engineers and applied mathematicians, P1
  • [2] [Anonymous], 2003, J APPL MATH
  • [3] APOSTOL TM, 1951, B AM MATH SOC, V57, P370
  • [4] Exponential polynomials
    Bell, ET
    [J]. ANNALS OF MATHEMATICS, 1934, 35 : 258 - 277
  • [5] Dattoli G., 1999, REND MATH, V19, P385
  • [6] Ghayasuddin M., 2019, COMMUNICATED, V1, P6
  • [7] Khan W. A., 2016, SPRINGERPLUS, V5, P1
  • [8] A new class of Laguerre-based Apostol type polynomials
    Khan, Waseem A.
    Araci, Serkan
    Acikgoz, Mehmet
    [J]. COGENT MATHEMATICS, 2016, 3
  • [9] Some Properties of the Generalized Apostol Type Hermite-Based Polynomials
    Khan, Waseem Ahmad
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (03): : 597 - 614
  • [10] Kurt B., 2010, App. Math. Sci., V4, P2315