Analytical properties of extended Hermite-Bernoulli polynomials

被引:1
作者
Khan, Nabiullah [1 ]
Ahmad, Naeem [2 ]
Ghayasuddin, Mohd [3 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
[2] Jouf Univ, Coll Sci, Dept Math, POB 2014, Sakaka, Saudi Arabia
[3] Dept Math, Integral Univ Campus, Shahjahanpur 242001, India
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2020年 / 20卷 / 04期
关键词
Hermite polynomials; Bernoulli polynomials; Hermite-Bernoulli polynomials; Mittag-Leffler function;
D O I
10.22436/jmcs.020.04.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article aims to present a new family of extended Hermite-Bernoulli polynomials by making use of the Mittag-Leffler function. We also derive some analytical properties of our proposed extended Hermite-Bernoulli polynomials systematically. Furthermore, some concluding remarks of our present investigation are also pointed out in the last section.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 17 条
[1]  
Andrews L. C., 1985, Special Functions for Engineers and Applied Mathematicians, P1
[2]  
[Anonymous], 2003, J APPL MATH
[3]  
APOSTOL TM, 1951, B AM MATH SOC, V57, P370
[4]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[5]  
Dattoli G., 1999, Rendiconti di Math, V19, P385
[6]  
Ghayasuddin M., 2019, COMMUNICATED, V1, P6
[7]  
Khan W. A., 2016, SPRINGERPLUS, V5, P1
[8]   A new class of Laguerre-based Apostol type polynomials [J].
Khan, Waseem A. ;
Araci, Serkan ;
Acikgoz, Mehmet .
COGENT MATHEMATICS, 2016, 3
[9]   Some Properties of the Generalized Apostol Type Hermite-Based Polynomials [J].
Khan, Waseem Ahmad .
KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (03) :597-614
[10]  
Kurt B., 2010, Appl. Math. Sci., V4, P2315