Viral recombination systems limit CRISPR-Cas targeting through the generation of escape mutations

被引:12
作者
Hossain, Amer A. [1 ]
McGinn, Jon [1 ]
Meeske, Alexander J. [1 ]
Modell, Joshua W. [1 ,3 ]
Marraffini, Luciano A. [1 ,2 ]
机构
[1] Rockefeller Univ, Lab Bacteriol, 1230 York Ave, New York, NY 10065 USA
[2] Rockefeller Univ, Howard Hughes Med Inst, 1230 York Ave, New York, NY 10065 USA
[3] Johns Hopkins Univ, Dept Mol Biol & Genet, Sch Med, 725 N Wolfe St, Baltimore, MD 21205 USA
关键词
IN-VITRO RECONSTITUTION; ESCHERICHIA-COLI; BACTERIOPHAGE-LAMBDA; RECBCD ENZYME; LEVEL EXPRESSION; RECA PROTEIN; DNA; RNA; IMMUNITY; CHI;
D O I
10.1016/j.chom.2021.09.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
CRISPR-Cas systems provide immunity to bacteria by programing Cas nucleases with RNA guides that recognize and cleave infecting viral genomes. Bacteria and their viruses each encode recombination systems that could repair the cleaved viral DNA. However, it is unknown whether and how these systems can affect CRISPR immunity. Bacteriophage lambda uses the Red system (gam-exo-bet) to promote recombination between related phages. Here, we show that lambda Red also mediates evasion of CRISPR-Cas targeting. Gam inhibits the host E. coli RecBCD recombination system, allowing recombination and repair of the cleaved DNA by phage Exo-Beta, which promotes the generation of mutations within the CRISPR target sequence. Red recombination is strikingly more efficient than the host's RecBCD-RecA in the production of large numbers of phages that escape CRISPR targeting. These results reveal a role for Red-like systems in the protection of bacteriophages against sequence-specific nucleases, which may facilitate their spread across viral genomes.
引用
收藏
页码:1482 / +
页数:26
相关论文
共 50 条
  • [21] Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting
    Chen, Fuqiang
    Ding, Xiao
    Feng, Yongmei
    Seebeck, Timothy
    Jiang, Yanfang
    Davis, Gregory D.
    NATURE COMMUNICATIONS, 2017, 8
  • [22] CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity
    Modell, Joshua W.
    Jiang, Wenyan
    Marraffini, Luciano A.
    NATURE, 2017, 544 (7648) : 101 - +
  • [23] CRISPR-Cas systems: beyond adaptive immunity
    Westra, Edze R.
    Buckling, Angus
    Fineran, Peter C.
    NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) : 317 - 326
  • [24] Characterization and evolution of Salmonella CRISPR-Cas systems
    Shariat, Nikki
    Timme, Ruth E.
    Pettengill, James B.
    Barrangou, Rodolphe
    Dudley, Edward G.
    MICROBIOLOGY-SGM, 2015, 161 : 374 - 386
  • [25] Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering
    Liu, Qiong
    Zhang, Hongxia
    Huang, Xiaotian
    FEBS JOURNAL, 2020, 287 (04) : 626 - 644
  • [26] Characterization of Ligilactobacillus salivarius CRISPR-Cas systems
    Roberts, Avery
    Spang, Daniel
    Sanozky-Dawes, Rosemary
    Nethery, Matthew A.
    Barrangou, Rodolphe
    MSPHERE, 2024, 9 (07)
  • [27] Gene regulation by engineered CRISPR-Cas systems
    Fineran, Peter C.
    Dy, Ron L.
    CURRENT OPINION IN MICROBIOLOGY, 2014, 18 : 83 - 89
  • [28] Predicting and visualizing features of CRISPR-Cas systems
    Nethery, Matthew A.
    Barrangou, Rodolphe
    CRISPR-CAS ENZYMES, 2019, 616 : 1 - 25
  • [29] Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR-Cas systems
    Cheng, Ezra C. K.
    Lam, Joe K. C.
    Kwon, S. Chul
    EMBO REPORTS, 2025, : 1891 - 1912
  • [30] A scoutRNA Is Required for Some Type V CRISPR-Cas Systems
    Harrington, Lucas B.
    Ma, Enbo
    Chen, Janice S.
    Witte, Isaac P.
    Gertz, Dov
    Paez-Espino, David
    Al-Shayeb, Basem
    Kyrpides, Nikos C.
    Burstein, David
    Banfield, Jillian F.
    Doudna, Jennifer A.
    MOLECULAR CELL, 2020, 79 (03) : 416 - +