Transport properties of the top and bottom surfaces in monolayer MoS2 grown by chemical vapor deposition

被引:19
|
作者
Kurabayashia, S. [1 ]
Nagashio, K. [1 ,2 ]
机构
[1] Univ Tokyo, Dept Mat Engn, Tokyo 1138656, Japan
[2] Japan Sci & Technol Agcy JST, PRESTO, Tokyo 1138656, Japan
关键词
FIELD-EFFECT TRANSISTORS; HIGH-QUALITY MONOLAYER; MOLYBDENUM-DISULFIDE; LARGE-AREA; LAYER MOS2; TRANSITION; PHOTOLUMINESCENCE; FILMS;
D O I
10.1039/c7nr05385a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The advantage of MoS2, compared with graphene, is the direct growth on various oxide substrates by chemical vapor deposition (CVD) without utilizing catalytic metal substrates, which facilitates practical applications for electronics. The carrier mobility is, however, degraded from the intrinsic limit mainly due to short-range scattering caused by S vacancies formed during CVD growth. If the upper limit for the crystallinity of CVD-MoS2 on oxide substrates is determined by the MoS2/substrate interaction during growth, it will hinder the advantage. In this study, we investigated the interaction between monolayer MoS2 and a SiO2/Si substrate and the difference in crystallinity between the top and bottom S surfaces due to the MoS2/substrate interaction. Raman and photoluminescence spectroscopy indicated that doping and strain were induced in MoS2 from the substrate, but they could be removed by transferring MoS2 to a new substrate using polymers. The newly developed polymer-transfer technique enabled selective transfer of the bottom or top surface of CVD-MoS2 onto a new SiO2/Si substrate. The metal-insulator transition was clearly observed for both the normal and inverse transfers, suggesting that the crystallinity of CVD-MoS2 is high and that the crystallinity of the bottom surface interacting with the substrate was similar to that of the top free surface. These results provide positive prospects for the further improvement of the crystallinity of MoS2 on oxide substrates by reconsidering the growth conditions.
引用
收藏
页码:13264 / 13271
页数:8
相关论文
共 50 条
  • [1] Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Schmidt, Hennrik
    Wang, Shunfeng
    Chu, Leiqiang
    Toh, Minglin
    Kumar, Rajeev
    Zhao, Weijie
    Neto, A. H. Castro
    Martin, Jens
    Adam, Shaffique
    Oezyilmaz, Barbaros
    Eda, Goki
    NANO LETTERS, 2014, 14 (04) : 1909 - 1913
  • [2] Optoelectronic properties of chemical vapor deposition grown monolayer MoS2 nanowires
    Pan, Cai
    Chen, Fei
    Su, Weitao
    Lu, Hongwei
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [3] Influence of defects on the valley polarization properties of monolayer MoS2 grown by chemical vapor deposition
    Mujeeb, Faiha
    Chakrabarti, Poulab
    Mahamiya, Vikram
    Shukla, Alok
    Dhar, Subhabrata
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [4] Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition
    Wang, Shanshan
    Rong, Youmin
    Fan, Ye
    Pacios, Merce
    Bhaskaran, Harish
    He, Kuang
    Warner, Jamie H.
    CHEMISTRY OF MATERIALS, 2014, 26 (22) : 6371 - 6379
  • [5] Annealing Response of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Pitthan, E.
    Gerling, E. R. F.
    Feijo, T. O.
    Radtke, C.
    Soares, G. V.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2019, 8 (04) : P267 - P270
  • [6] Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition
    Zhang, Guozhu
    Wang, Jingwei
    Wu, Zefei
    Shi, Run
    Ouyang, Wenkai
    Amini, Abbas
    Chandrashekar, Bananakere Nanjegowda
    Wang, Ning
    Cheng, Chun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) : 763 - 770
  • [7] Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2
    Kim, In Soo
    Sangwan, Vinod K.
    Jariwala, Deep
    Wood, Joshua D.
    Park, Spencer
    Chen, Kan-Sheng
    Shi, Fengyuan
    Ruiz-Zepeda, Francisco
    Ponce, Arturo
    Jose-Yacaman, Miguel
    Dravid, Vinayak P.
    Marks, Tobin J.
    Hersam, Mark C.
    Lauhon, Lincoln J.
    ACS NANO, 2014, 8 (10) : 10551 - 10558
  • [8] Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition
    Perkgoz, Nihan Kosku
    Bay, Mehmet
    NANO-MICRO LETTERS, 2016, 8 (01) : 70 - 79
  • [9] Structural and optical properties of MoS2 layers grown by successive two-step chemical vapor deposition method
    Qiu, Dongri
    Lee, Dong Uk
    Pak, Sang Woo
    Kim, Eun Kyu
    THIN SOLID FILMS, 2015, 587 : 47 - 51
  • [10] Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition
    Luo, Siwei
    Cullen, Conor P.
    Guo, Gencai
    Zhong, Jianxin
    Duesberg, Georg S.
    APPLIED SURFACE SCIENCE, 2020, 508