CRISPR/Cas9-Mediated Integration of Large Transgene into Pig CEP112 Locus

被引:21
|
作者
Li, Guoling [1 ]
Zhang, Xianwei [2 ]
Wang, Haoqiang [1 ]
Mo, Jianxin [2 ]
Zhong, Cuili [2 ]
Shi, Junsong [2 ]
Zhou, Rong [2 ]
Li, Zicong [1 ]
Yang, Huaqiang [1 ,2 ]
Wu, Zhenfang [1 ,2 ]
Liu, Dewu [1 ]
机构
[1] South China Agr Univ, Coll Anim Sci, Natl Engn Res Ctr Breeding Swine Ind, Guangzhou 510642, Peoples R China
[2] Wens Foodstuff Grp Co Ltd, Yunfu 527400, Peoples R China
来源
G3-GENES GENOMES GENETICS | 2020年 / 10卷 / 02期
关键词
CRISPR; Cas9; CEP112; homology arm; genetically modified pig; safe harbor; HOMOLOGY-DIRECTED REPAIR; GENE KNOCK-IN; EFFICIENCY; CRISPR-CAS9; INHIBITION; EXPRESSION; PITCH;
D O I
10.1534/g3.119.400810
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating tool that can produce targeted gene mutations in various cells and organisms. Although CRISPR/Cas9 can efficiently generate gene knockout, the gene knock-in (KI) efficiency mediated by homology-directed repair remains low, especially for large fragment integration. In this study, we established an efficient method for the CRISPR/Cas9-mediated integration of large transgene cassette, which carries salivary gland-expressed multiple digestion enzymes (approximate to 20 kbp) in CEP112 locus in pig fetal fibroblasts (PFFs). Our results showed that using an optimal homology donor with a short and a long arm yielded the best CRISPR/Cas9-mediated KI efficiency in CEP112 locus, and the targeting efficiency in CEP112 locus was higher than in ROSA26 locus. The CEP112 KI cell lines were used as nuclear donors for somatic cell nuclear transfer to create genetically modified pigs. We found that KI pig (705) successfully expressed three microbial enzymes (beta-glucanase, xylanase, and phytase) in salivary gland. This finding suggested that the CEP112 locus supports exogenous gene expression by a tissue-specific promoter. In summary, we successfully targeted CEP112 locus in pigs by using our optimal homology arm system and established a modified pig model for foreign digestion enzyme expression in the saliva.
引用
收藏
页码:467 / 473
页数:7
相关论文
共 50 条
  • [21] Dynamics of CRISPR/Cas9-mediated genomic editing of the AXL locus in hepatocellular carcinoma cells
    Scharf, Irene
    Bierbaumer, Lisa
    Huber, Heidemarie
    Wittmann, Philipp
    Haider, Christine
    Pirker, Christine
    Berger, Walter
    Mikulits, Wolfgang
    ONCOLOGY LETTERS, 2018, 15 (02) : 2441 - 2450
  • [22] CRISPR/Cas9-Mediated Genome Modification in the Mollusc, Crepidula fornicata
    Perry, Kimberly J.
    Henry, Jonathan Q.
    GENESIS, 2015, 53 (02) : 237 - 244
  • [23] Nano-vectors for CRISPR/Cas9-mediated genome editing
    Yang, Peng
    Lee, Athena Yue-Tung
    Xue, Jingjing
    Chou, Shih-Jie
    Lee, Calvin
    Tseng, Patrick
    Zhang, Tiffany X.
    Zhu, Yazhen
    Lee, Junseok
    Chiou, Shih-Hwa
    Tseng, Hsian-Rong
    NANO TODAY, 2022, 44
  • [24] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium
    Muramoto, Tetsuya
    Iriki, Hoshie
    Watanabe, Jun
    Kawata, Takefumi
    CELLS, 2019, 8 (01)
  • [25] CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis
    Sasaki, Haruka
    Yoshida, Keita
    Hozumi, Akiko
    Sasakura, Yasunori
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2014, 56 (07) : 499 - 510
  • [26] A Novel CRISPR/Cas9-mediated Mouse Model of Colon Carcinogenesis
    Kashima, Hajime
    Fischer, Anthony
    Veronese-Paniagua, Daniel A.
    Gazit, Vered A.
    Ma, Changqing
    Yan, Yan
    Levin, Marc S.
    Madison, Blair B.
    Rubin, Deborah C.
    CELLULAR AND MOLECULAR GASTROENTEROLOGY AND HEPATOLOGY, 2024, 18 (05):
  • [27] CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review
    Begagic, Emir
    Beculic, Hakija
    Duzic, Nermin
    Dzidic-Krivic, Amina
    Pugonja, Ragib
    Muharemovic, Asja
    Jaganjac, Belma
    Salkovic, Naida
    Sefo, Haso
    Pojskic, Mirza
    BIOMEDICINES, 2024, 12 (01)
  • [28] Efficient CRISPR/Cas9-mediated genome editing in Rehmannia glutinosa
    Li, Xinrong
    Zuo, Xin
    Li, Mingming
    Yang, Xu
    Zhi, Jingyu
    Sun, Hongzheng
    Xie, Caixia
    Zhang, Zhongyi
    Wang, Fengqing
    PLANT CELL REPORTS, 2021, 40 (09) : 1695 - 1707
  • [29] CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish
    Bai, Haipeng
    Liu, Lijun
    An, Ke
    Lu, Xiaochan
    Harrison, Michael
    Zhao, Yanqiu
    Yan, Ruibin
    Lu, Zhijie
    Li, Song
    Lin, Shuo
    Liang, Fang
    Qin, Wei
    BMC GENOMICS, 2020, 21 (01)
  • [30] Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing
    Bierle, Craig J.
    Anderholm, Kaitlyn M.
    Ben Wang, Jian
    McVoy, Michael A.
    Schleiss, Mark R.
    JOURNAL OF VIROLOGY, 2016, 90 (15) : 6989 - 6998