POSITIVE AND NEGATIVE DEFINITE SUBMATRICES IN AN HERMITIAN LEAST RANK SOLUTION OF THE MATRIX EQUATION AXA* = B

被引:1
作者
Guerarra, Sihem [1 ]
机构
[1] Univ Oum El Bouaghi, Fac Exact Sci & Sci Nat & Life, Dept Math, Oum El Bouaghi 04000, Algeria
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2019年 / 9卷 / 01期
关键词
Matrix equation; Moore-Penrose generalized inverse; Inertias; Least-rank solution;
D O I
10.3934/naco.2019002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to establish the extremal inertias of the two submatrices X-1 and X-4 in a Hermitian least rank solution X of the matrix equation AXA* = B. From these formulas, necessary and sufficient conditions for these submatrices to be positive (nonpositive, negative, nonnegative) definite are achieved.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 11 条
[1]  
Ben-Israel A., 2003, GEN INVERSE THEORY A
[2]  
Cambell S. L., 2008, GEN INVERSE LINEAR T
[3]  
Guerarra S, 2015, FACTA UNIV-SER MATH, V30, P539
[4]   Extremal ranks of submatrices in an Hermitian solution to the matrix equation AXA* = B with applications [J].
Liu Y. ;
Tian Y. .
Journal of Applied Mathematics and Computing, 2010, 32 (02) :289-301
[5]   Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA* = B [J].
Liu, Yonghui ;
Tian, Yongge ;
Takane, Yoshio .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) :2359-2372
[6]  
Marsaglia G., 1974, Linear Multilinear Algebra, V2, P269, DOI [10.1080/03081087408817070, DOI 10.1080/03081087408817070]
[7]  
Tian Y., 2003, New York J. Math., V9, P345
[8]  
Tian Y., 2002, SEA B MATH, V25, P745, DOI [10.1007/s100120200015, DOI 10.1007/S100120200015]
[9]   Least-squares solutions and least-rank solutions of the matrix equation AXA* = B and their relations [J].
Tian, Yongge .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (05) :713-722
[10]   Maximization and minimization of the rank and inertia of the Hermitian matrix expression A - BX - (BX)* with applications [J].
Tian, Yongge .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (10) :2109-2139