Low-Loss Optomechanical Oscillator for Quantum-Optics Experiments

被引:12
作者
Borrielli, A. [1 ,2 ]
Pontin, A. [3 ,4 ]
Cataliotti, F. S. [3 ,4 ,5 ]
Marconi, L. [3 ]
Marin, F. [3 ,4 ,5 ]
Marino, F. [4 ,6 ]
Pandraud, G. [7 ]
Prodi, G. A. [2 ,8 ]
Serra, E. [2 ,7 ,8 ]
Bonaldi, M. [1 ,2 ]
机构
[1] Nanosci Trento FBK Div, Inst Mat Elect & Magnetism, I-38123 Povo, Trento, Italy
[2] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Trento, Italy
[3] Univ Firenze, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, FI, Italy
[4] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
[5] European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, FI, Italy
[6] CNR INO, I-50125 Florence, Italy
[7] Delft Univ Technol, Dept Microelect & Comp Engn ECTM DIMES, NL-2628 CT Delft, Netherlands
[8] Univ Trento, Dipartimento Fis, I-38123 Povo, Trento, Italy
关键词
NANOMECHANICAL RESONATORS; NOISE REDUCTION; CAVITY; DISSIPATION; MICROWAVE; LIGHT; STATE; LASER;
D O I
10.1103/PhysRevApplied.3.054009
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an oscillating micromirror with mechanical quality factors Q up to 1.2 x 10(6) at cryogenic temperature and optical losses lower than 20 ppm. The device is specifically designed to ease the detection of ponderomotive squeezing (or, more generally, to produce a cavity quantum optomechanical system) at frequencies of about 100 kHz. The design allows one to keep under control both the structural loss in the optical coating and the mechanical energy leakage through the support. The comparison between devices with different shapes shows that the residual mechanical loss at 4.2 K is equally contributed by the intrinsic loss of the silicon substrate and of the coating, while at higher temperatures the dominant loss mechanism is thermoelasticity in the substrate. As the modal response of the device is tailored for its use in optical cavities, these features make the device very promising for quantum-optics experiments.
引用
收藏
页数:12
相关论文
共 57 条
[1]  
Aasi J, 2013, NAT PHOTONICS, V7, P613, DOI [10.1038/nphoton.2013.177, 10.1038/NPHOTON.2013.177]
[2]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[3]   MIRROR REFLECTOMETER BASED ON OPTICAL CAVITY DECAY TIME [J].
ANDERSON, DZ ;
FRISCH, JC ;
MASSER, CS .
APPLIED OPTICS, 1984, 23 (08) :1238-1245
[4]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[5]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[6]  
Bagheri M, 2011, NAT NANOTECHNOL, V6, P726, DOI [10.1038/NNANO.2011.180, 10.1038/nnano.2011.180]
[7]   Wideband mechanical response of a high-Q silicon double-paddle oscillator [J].
Borrielli, A. ;
Bonaldi, M. ;
Serra, E. ;
Bagolini, A. ;
Conti, L. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (06)
[8]  
Braginsky V.B., 1995, QUANTUM MEASUREMENTS
[9]   Non-classical light generated by quantum-noise-driven cavity optomechanics [J].
Brooks, Daniel W. C. ;
Botter, Thierry ;
Schreppler, Sydney ;
Purdy, Thomas P. ;
Brahms, Nathan ;
Stamper-Kurn, Dan M. .
NATURE, 2012, 488 (7412) :476-480
[10]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92