QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency

被引:10
作者
Bokhari, Yahya [1 ,2 ,3 ]
Alhareeri, Areej [4 ,5 ]
Arodz, Tomasz [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Coll Engn, 401 W Main St, Richmond, VA 23284 USA
[2] King Abdullah Int Med Res Ctr, Dept Biostat & Bioinformat, Riyadh, Saudi Arabia
[3] King Saud Bin Abdulaziz Univ Hlth Sci, Riyadh, Saudi Arabia
[4] King Saud Bin Abdulaziz Univ Hlth Sci, Coll Appl Med Sci, Riyadh, Saudi Arabia
[5] King Abdullah Int Med Res Ctr, Riyadh, Saudi Arabia
关键词
Somatic mutations; Cancer pathways; Driver mutations; Protein-protein interaction networks; HUMAN BREAST-CANCER; SOMATIC MUTATIONS; TUMOR-SUPPRESSOR; HUMAN OVARIAN; PATHWAYS; ONCOGENE; CELLS; HIF1-ALPHA; LANDSCAPE; REVEALS;
D O I
10.1186/s12859-020-3449-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Cancer is caused by genetic mutations, but not all somatic mutations in human DNA drive the emergence or growth of cancers. While many frequently-mutated cancer driver genes have already been identified and are being utilized for diagnostic, prognostic, or therapeutic purposes, identifying driver genes that harbor mutations occurring with low frequency in human cancers is an ongoing endeavor. Typically, mutations that do not confer growth advantage to tumors - passenger mutations - dominate the mutation landscape of tumor cell genome, making identification of low-frequency driver mutations a challenge. The leading approach for discovering new putative driver genes involves analyzing patterns of mutations in large cohorts of patients and using statistical methods to discriminate driver from passenger mutations. Results We propose a novel cancer driver gene detection method, QuaDMutNetEx. QuaDMutNetEx discovers cancer drivers with low mutation frequency by giving preference to genes encoding proteins that are connected in human protein-protein interaction networks, and that at the same time show low deviation from the mutual exclusivity pattern that characterizes driver mutations occurring in the same pathway or functional gene group across a cohort of cancer samples. Conclusions Evaluation of QuaDMutNetEx on four different tumor sample datasets show that the proposed method finds biologically-connected sets of low-frequency driver genes, including many genes that are not found if the network connectivity information is not considered. Improved quality and interpretability of the discovered putative driver gene sets compared to existing methods shows that QuaDMutNetEx is a valuable new tool for detecting driver genes. QuaDMutNetEx is available for download from under the GNU GPLv3 license.
引用
收藏
页数:12
相关论文
共 71 条
[1]   Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers [J].
Ayyildiz, Dilara ;
Gov, Esra ;
Sinha, Raghu ;
Arga, Kazim Yalcin .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2017, 21 (05) :285-294
[2]   DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer [J].
Bashashati, Ali ;
Haffari, Gholamreza ;
Ding, Jiarui ;
Ha, Gavin ;
Lui, Kenneth ;
Rosner, Jamie ;
Huntsman, David G. ;
Caldas, Carlos ;
Aparicio, Samuel A. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2012, 13 (12) :R124
[3]   A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease [J].
Bhowmick, DA ;
Zhuang, ZP ;
Wait, SD ;
Weil, RJ .
CANCER RESEARCH, 2004, 64 (04) :1220-1223
[4]   Signatures of mutation and selection in the cancer genome [J].
Bignell, Graham R. ;
Greenman, Chris D. ;
Davies, Helen ;
Butler, Adam P. ;
Edkins, Sarah ;
Andrews, Jenny M. ;
Buck, Gemma ;
Chen, Lina ;
Beare, David ;
Latimer, Calli ;
Widaa, Sara ;
Hinton, Jonathon ;
Fahey, Ciara ;
Fu, Beiyuan ;
Swamy, Sajani ;
Dalgliesh, Gillian L. ;
Teh, Bin T. ;
Deloukas, Panos ;
Yang, Fengtang ;
Campbell, Peter J. ;
Futreal, P. Andrew ;
Stratton, Michael R. .
NATURE, 2010, 463 (7283) :893-U61
[5]   QuaDMutEx: quadratic driver mutation explorer [J].
Bokhari, Yahya ;
Arodz, Tomasz .
BMC BIOINFORMATICS, 2017, 18 :458
[6]  
Bonomi Serena, 2013, Int J Cell Biol, V2013, P962038, DOI 10.1155/2013/962038
[7]   Ketones and lactate "fuel" tumor growth and metastasis Evidence that epithelial cancer cells use oxidative mitochondrial metabolism [J].
Bonuccelli, Gloria ;
Tsirigos, Aristotelis ;
Whitaker-Menezes, Diana ;
Pavlides, Stephanos ;
Pestell, Richard G. ;
Chiavarina, Barbara ;
Frank, Philippe G. ;
Flomenberg, Neal ;
Howell, Anthony ;
Martinez-Outschoorn, Ubaldo E. ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2010, 9 (17) :3506-3514
[8]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[9]   Transcriptomic dynamics of breast cancer progression in the MMTV-PyMT mouse model [J].
Cai, Ying ;
Nogales-Cadenas, Ruben ;
Zhang, Quanwei ;
Lin, Jhih-Rong ;
Zhang, Wen ;
O'Brien, Kelly ;
Montagna, Cristina ;
Zhang, Zhengdong D. .
BMC GENOMICS, 2017, 18
[10]   Deciphering oncogenic drivers: from single genes to integrated pathways [J].
Chen, Jiajia ;
Sun, Maomin ;
Shen, Bairong .
BRIEFINGS IN BIOINFORMATICS, 2015, 16 (03) :413-428