Nonperturbative renormalization group approach to the Ising model:: A derivative expansion at order partial derivative4 -: art. no. 064421

被引:166
作者
Canet, L
Delamotte, B
Mouhanna, D
Vidal, J
机构
[1] Univ Paris 06, Lab Phys Theor & Hautes Energies, CNRS UMR 7589, F-75252 Paris 05, France
[2] Univ Paris 07, F-75252 Paris 05, France
[3] Univ Paris 06, Phys Solides Grp, CNRS UMR 7588, F-75251 Paris 05, France
[4] Univ Paris 07, F-75251 Paris 05, France
关键词
D O I
10.1103/PhysRevB.68.064421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group equations allow one to obtain very accurate critical exponents. Implementing the order partial derivative(4) of the derivative expansion leads to nu=0.632 and to an anomalous dimension eta=0.033 which is significantly improved compared with lower orders calculations.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Rapidly converging truncation scheme of the exact renormalization group [J].
Aoki, KI ;
Morikawa, K ;
Souma, W ;
Sumi, JI ;
Terao, H .
PROGRESS OF THEORETICAL PHYSICS, 1998, 99 (03) :451-466
[2]   Exact renormalization group equations: an introductory review [J].
Bagnuls, C ;
Bervillier, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2) :91-157
[3]   SCHEME INDEPENDENCE AND THE EXACT RENORMALIZATION-GROUP [J].
BALL, RD ;
HAAGENSEN, PE ;
LATORRE, JI ;
MORENO, E .
PHYSICS LETTERS B, 1995, 347 (1-2) :80-88
[4]   Phase diagram of superconductors from nonperturbative flow equations [J].
Bergerhoff, B ;
Freire, F ;
Litim, DF ;
Lola, S ;
Wetterich, C .
PHYSICAL REVIEW B, 1996, 53 (09) :5734-5757
[5]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[6]   Optimization of the derivative expansion in the nonperturbative renormalization group [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW D, 2003, 67 (06)
[7]  
Canet L., UNPUB
[8]   Polchinski equation, reparameterization invariance and the derivative expansion [J].
Comellas, J .
NUCLEAR PHYSICS B, 1998, 509 (03) :662-686
[9]   FLOW EQUATIONS FOR N-POINT FUNCTIONS AND BOUND-STATES [J].
ELLWANGER, U .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 62 (03) :503-510
[10]   Critical exponents of the N-vector model [J].
Guida, R ;
Zinn-Justin, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (40) :8103-8121