Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells

被引:18
作者
Prisner, Lisa [1 ]
Bohn, Nadine [1 ]
Hahn, Ulrich [2 ]
Mews, Alf [1 ]
机构
[1] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany
[2] Univ Hamburg, Inst Biochem & Mol Biol, Martin Luther King Pl 6, D-20146 Hamburg, Germany
关键词
CELLULAR UPTAKE; SYSTEMATIC EVOLUTION; PARTICLE-SIZE; SURFACE; RECEPTOR; BIOLOGY; TOOLS;
D O I
10.1039/c7nr02973j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The delivery of gold nanoparticles (AuNPs) to specific cells strongly depends on the properties e.g. the size of the particles and is of great interest for a large variety of biomedical applications. Here we investigated the size dependence of the receptor-ligand mediated AuNP delivery to cells by comparing very small "molecular" Au-clusters of only 2 nm to larger 7 nm and 36 nm AuNPs with a distinct surface plasmon resonance. Since the molecular weight in this range changes by almost three orders of magnitude, we show how the amount of gold relates to the number of delivered AuNPs. We attached small interleukin-6 receptor (IL-6R) specific aptamer molecules (AIR-3A) in different amounts to the particles and investigated the specificity of the delivery to IL-6R-carrying cells. To reduce unspecific interaction the particles were additionally covered with polyethylene glycol (PEG). Besides particle size and concentration we varied additional parameters such as aptamer surface coverage as well as incubation time and temperature. We found that in particular, small particles with diameters of less than 2 nm show an up to six times higher delivery rate for the aptamer-conjugated AuNPs compared to untargeted PEG-coated AuNPs. The specificity reduces with a decreasing aptamer/PEG ratio, and also with an increase in particle size where the unspecific uptake is much higher. In addition we also compared the delivery efficiency of this aptamer-mediated delivery system with an antibody-mediated system targeting the same receptor to validate the performance of this approach.
引用
收藏
页码:14486 / 14498
页数:13
相关论文
共 55 条
[1]   Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? [J].
Alkilany, Alaaldin M. ;
Murphy, Catherine J. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (07) :2313-2333
[2]   Interactions of Human Endothelial Cells with Gold Nanoparticles of Different Morphologies [J].
Bartczak, Dorota ;
Muskens, Otto L. ;
Nitti, Simone ;
Sanchez-Elsner, Tilman ;
Millar, Timothy M. ;
Kanaras, Antonios G. .
SMALL, 2012, 8 (01) :122-130
[3]   Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening [J].
Bastus, Neus G. ;
Comenge, Joan ;
Puntes, Victor .
LANGMUIR, 2011, 27 (17) :11098-11105
[4]   Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels - Selective targeting of endothelial regulatory protein pigpen [J].
Blank, M ;
Weinschenk, T ;
Priemer, M ;
Schluesener, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (19) :16464-16468
[5]   THE PHYSICAL AND FUNCTIONAL-BEHAVIOR OF CAPTURE ANTIBODIES ADSORBED ON POLYSTYRENE [J].
BUTLER, JE ;
NI, L ;
NESSLER, R ;
JOSHI, KS ;
SUTER, M ;
ROSENBERG, B ;
CHANG, J ;
BROWN, WR ;
CANTARERO, LA .
JOURNAL OF IMMUNOLOGICAL METHODS, 1992, 150 (1-2) :77-90
[6]   Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays [J].
Butler, JE .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 2000, 22 (01) :4-23
[7]   Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes [J].
Chithrani, B. Devika ;
Chan, Warren C. W. .
NANO LETTERS, 2007, 7 (06) :1542-1550
[8]   Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells [J].
Chithrani, BD ;
Ghazani, AA ;
Chan, WCW .
NANO LETTERS, 2006, 6 (04) :662-668
[9]   A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors [J].
Choi, Mi-Ran ;
Stanton-Maxey, Katie J. ;
Stanley, Jennifer K. ;
Levin, Carly S. ;
Bardhan, Rizia ;
Akin, Demir ;
Badve, Sunil ;
Sturgis, Jennifer. ;
Robinson, J. Paul ;
Bashir, Rashid ;
Halas, Naomi J. ;
Clare, Susan E. .
NANO LETTERS, 2007, 7 (12) :3759-3765
[10]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327