Graphene Oxide Wrapping of Gold-Silica Core-Shell Nanohybrids for Photoacoustic Signal Generation and Bimodal Imaging

被引:36
作者
Sreejith, Sivaramapanicker [1 ]
Joseph, James [2 ]
Nguyen, Kim Truc [1 ]
Murukeshan, Vadakke Matham [2 ]
Lye, Sun Woh [2 ]
Zhao, Yanli [1 ,3 ]
机构
[1] Nanyang Technol Univ, Div Chem & Biol Chem, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Ctr Opt & Lasers Engn, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
bimodal imaging; core-shell nanoparticles; finite difference time domain; graphene oxide; photoacoustic imaging; MESOPOROUS SILICA; ANODE MATERIALS; NANOPARTICLES; BIOMEDICINE; SIZE;
D O I
10.1002/cnma.201400017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the development of graphene oxide (GO) wrapped silica-coated gold nanoparticles (GO-Au-NP@SiO2), which exhibit an unprecedented absorption enhancement in the visible region of the electromagnetic spectrum. GO coating on the core-shell nanohybrid enhances residual plasmonic absorption of the nanohybrid while maintaining its compact size. Finite-difference time domain simulations show an electromagnetic field intensity enhancement owing to GO wrapping over three different gold cores with 10, 20 and 30 nm in diameter and uniform silica thickness of 30 nm. Bimodal imaging using fluorescent microbeads reveals an enhanced photoacoustic signal from GO-Au-NP@SiO2 in an integrated photoacoustic and fluorescence imaging setup. Present approach provides a fundamental platform for photoacoustic signal generation using plasmonic nanoparticles with low toxicity. This unique strategy opens up new avenues for enhancing photoacoustic signals and for combined fluorescence and photoacoustic imaging.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 32 条
[1]  
Bell A. G., 1880, American Journal of Science, V20, P305, DOI [DOI 10.2475/AJS.S3-20.118.305, 10.2475/ajs.s3-20.118.305]
[2]   Scalable Routes to Janus Au-SiO2 and Ternary Ag-Au-SiO2 Nanoparticles [J].
Chen, Tao ;
Chen, Gang ;
Xing, Shuangxi ;
Wu, Tom ;
Chen, Hongyu .
CHEMISTRY OF MATERIALS, 2010, 22 (13) :3826-3828
[3]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[4]  
Edwards D.F., 1985, Handbook of optical constants of solids
[5]   CONTROLLED NUCLEATION FOR REGULATION OF PARTICLE-SIZE IN MONODISPERSE GOLD SUSPENSIONS [J].
FRENS, G .
NATURE-PHYSICAL SCIENCE, 1973, 241 (105) :20-22
[6]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[7]   Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles [J].
Gutrath, Benjamin S. ;
Beckmann, Martin F. ;
Buchkremer, Anne ;
Eckert, Thomas ;
Timper, Jan ;
Leifert, Annika ;
Richtering, Walter ;
Schmitz, Georg ;
Simon, Ulrich .
NANOTECHNOLOGY, 2012, 23 (22)
[8]   Remote-Controlled Drug Release from Graphene Oxide-Capped Mesoporous Silica to Cancer Cells by Photoinduced pH-Jump Activation [J].
He, Dinggeng ;
He, Xiaoxiao ;
Wang, Kemin ;
Zou, Zhen ;
Yang, Xue ;
Li, Xuecai .
LANGMUIR, 2014, 30 (24) :7182-7189
[9]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[10]   Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine [J].
Jain, PK ;
Lee, KS ;
El-Sayed, IH ;
El-Sayed, MA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (14) :7238-7248