A Gridless DOA Estimation Method Based on Convolutional Neural Network With Toeplitz Prior

被引:46
作者
Wu, Xiaohuan [1 ]
Yang, Xu [1 ]
Jia, Xiaoyuan [1 ]
Tian, Feng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Nanjing 210049, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction-of-arrival estimation; Estimation; Covariance matrices; Training; Databases; Convolutional neural networks; Task analysis; Direction-of-arrival (DOA) estimation; deep learning; gridless; Toeplitz structure; OF-ARRIVAL ESTIMATION; SPARSE; ARRAY;
D O I
10.1109/LSP.2022.3176211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most existing deep learning (DL) based direction-of-arrival (DOA) estimation methods treat direction finding problem as a multi-label classification task and the output of the neural network is a probability spectrum where the peaks indicate the true DOAs. These methods essentially belong to grid-based methods and may encounter grid mismatch effect. In this paper, we focus on gridless DL based DOA estimation under generalized linear array which can be regarded as a uniform linear array (ULA) with/without "holes". By using the Toeplitz structure, a deep convolutional neural network (CNN) is proposed to estimate the noiseless covariance matrix of the aforementioned ULA with "no holes," based on which the DOAs can be retrieved by using root-MUSIC. To increase the generalization, the parameters of the CNN with respect to different number of sources are pre-trained and stored in a database. We then propose another CNN for source enumeration in order to choose suitable parameters from the database. Our method can find more sources than sensors and do not suffer from the grid mismatch effect.
引用
收藏
页码:1247 / 1251
页数:5
相关论文
共 22 条
[1]   Complex ResNet Aided DoA Estimation for Near-Field MIMO Systems [J].
Cao, Yashuai ;
Lv, Tiejun ;
Lin, Zhipeng ;
Huang, Pingmu ;
Lin, Fuhong .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) :11139-11151
[2]  
Christensen MG, 2011, 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P449, DOI 10.1109/SSP.2011.5967728
[3]   Robust DOA Estimation Method for MIMO Radar via Deep Neural Networks [J].
Cong, Jingyu ;
Wang, Xianpeng ;
Huang, Mengxing ;
Wan, Liangtian .
IEEE SENSORS JOURNAL, 2021, 21 (06) :7498-7507
[4]   Detecting the Number of Clusters in n-Way Probabilistic Clustering [J].
He, Zhaoshui ;
Cichocki, Andrzej ;
Xie, Shengli ;
Choi, Kyuwan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (11) :2006-2021
[5]   Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections [J].
Liu, Zhang-Meng ;
Zhang, Chenwei ;
Yu, Philip S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (12) :7315-7327
[6]   A sparse signal reconstruction perspective for source localization with sensor arrays [J].
Malioutov, D ;
Çetin, M ;
Willsky, AS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :3010-3022
[7]   Bayesian Model Comparison With the g-Prior [J].
Nielsen, Jesper Kjaer ;
Christensen, Mads Graesboll ;
Cemgil, Ali Taylan ;
Jensen, Soren Holdt .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (01) :225-238
[8]   Deep Networks for Direction-of-Arrival Estimation in Low SNR [J].
Papageorgiou, Georgios Konstantinos ;
Sellathurai, Mathini ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :3714-3729
[9]   MULTIPLE EMITTER LOCATION AND SIGNAL PARAMETER-ESTIMATION [J].
SCHMIDT, RO .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1986, 34 (03) :276-280
[10]   Compressed Sensing Off the Grid [J].
Tang, Gongguo ;
Bhaskar, Badri Narayan ;
Shah, Parikshit ;
Recht, Benjamin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (11) :7465-7490