Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators

被引:32
作者
The Anh Bui [1 ,2 ]
Xuan Thinh Duong [1 ]
机构
[1] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[2] Univ Pedag, Dept Math, Ho Chi Minh City, Vietnam
基金
澳大利亚研究理事会;
关键词
Hermite operator; Besov space; Triebel-Lizorkin space; Molecular decomposition; SCHRODINGER-OPERATORS; DECOMPOSITION; EXPANSIONS; LIPSCHITZ; TRANSFORM;
D O I
10.1007/s00041-014-9378-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the Hermite operator on the Euclidean space . The main aim of this article is to develop a theory of homogeneous and inhomogeneous Besov and Triebel-Lizorkin spaces associated to the Hermite operator. Our inhomogeneous Besov and Triebel-Lizorkin spaces are different from those introduced by Petrushev and Xu (J Fourier Anal Appl 14, 372-414 2008). As applications, we show the boundedness of negative powers and spectral multipliers of the Hermite operators on some appropriate Besov and Triebel-Lizorkin spaces.
引用
收藏
页码:405 / 448
页数:44
相关论文
共 15 条
[1]   Maximal inequalities and Riesz transform estimates on LP spaces for Schrodinger operators with nonnegative potentials [J].
Auscher, Pascal ;
Ben Ali, Besma .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (06) :1975-2013
[2]  
Bui H-Q., 1995, Contemp. Math, V189, P95, DOI [10.1090/conm/189/02258, DOI 10.1090/CONM/189/02258]
[3]   Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the case q<1 [J].
Bui, HQ ;
Paluszynski, M ;
Taibleson, M .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :837-846
[4]  
Bui HQ, 1996, STUD MATH, V119, P219
[5]   Calderon reproducing formulas and new Besov spaces associated with operators [J].
Bui, Huy-Qui ;
Duong, Xuan Thinh ;
Yan, Lixin .
ADVANCES IN MATHEMATICS, 2012, 229 (04) :2449-2502
[6]  
Coulhon T., 2000, Adv. Diff. Equa, V5, P343
[7]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[8]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[9]   A local version of Hardy spaces associated with operators on metric spaces [J].
Gong RuMing ;
Li Ji ;
Yan LiXin .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (02) :315-330
[10]  
Keryacharian G., T AM MATH S IN PRESS