Modelling electron-phonon interactions in graphene with curved space hydrodynamics

被引:5
作者
Giordanelli, Ilario [1 ]
Mendoza, Miller [1 ]
Herrmann, Hans Jurgen [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Univ Fed Ceara, Dept Fis, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil
基金
欧洲研究理事会;
关键词
D O I
10.1038/s41598-018-30354-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a different perspective describing electron-phonon interactions in graphene based on curved space hydrodynamics. Interactions of phonons with charge carriers increase the electrical resistivity of the material. Our approach captures the lattice vibrations as curvature changes in the space through which electrons move following hydrodynamic equations. In this picture, inertial corrections to the electronic flow arise naturally effectively producing electron-phonon interactions. The strength of the interaction is controlled by a coupling constant, which is temperature independent. We apply this model to graphene and recover satisfactorily the linear scaling law for the resistivity that is expected at high temperatures. Our findings open up a new perspective of treating electron-phonon interactions in graphene, and also in other materials where electrons can be described by the Fermi liquid theory.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Hydrodynamic theory of transport in doped graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2009, 80 (08)
[2]   For electric Resistance law at low Temperatures. [J].
Bloch, F. .
ZEITSCHRIFT FUR PHYSIK, 1930, 59 (3-4) :208-214
[3]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[4]   First-principles analysis of electron-phonon interactions in graphene [J].
Borysenko, K. M. ;
Mullen, J. T. ;
Barry, E. A. ;
Paul, S. ;
Semenov, Y. G. ;
Zavada, J. M. ;
Nardelli, M. Buongiorno ;
Kim, K. W. .
PHYSICAL REVIEW B, 2010, 81 (12)
[5]   Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons [J].
Castro, Eduardo V. ;
Ochoa, H. ;
Katsnelson, M. I. ;
Gorbachev, R. V. ;
Elias, D. C. ;
Novoselov, K. S. ;
Geim, A. K. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[6]  
Cercignani C., 2002, The relativistic Boltzmann equation: theory and applications
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]  
Ciarlet PG, 2005, J ELASTICITY, V78-79, P5
[9]  
Debus J.-D., 2015, 151108031 ARXIV
[10]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)