Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation

被引:50
作者
Day, S
Hiraoka, Y
Mischaikow, K
Ogawa, T
机构
[1] Vrije Univ Amsterdam, Fac Exacte Wetenschappen, Afdeling Wiskunde, NL-1081 HV Amsterdam, Netherlands
[2] Osaka Univ, Grad Sch Engn Sci, Dept Math Sci, Suita, Osaka 565, Japan
[3] Georgia Inst Technol, Ctr Dynam Syst & Nonlinear Studies, Atlanta, GA 30322 USA
关键词
rigorous numerics; semiconjugacy; Conley index;
D O I
10.1137/040604479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a rigorous numerical method for the study and veri. cation of global dynamics. In particular, this method produces a conjugacy or semiconjugacy between an attractor for the Swift - Hohenberg equation and a model system. The procedure involved relies on first verifying bifurcation diagrams produced via continuation methods, including proving the existence and uniqueness of computed branches as well as showing the nonexistence of additional stationary solutions. Topological information in the form of the Conley index, also computed during this veri. cation procedure, is then used to build a model for the attractor consisting of stationary solutions and connecting orbits.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 17 条
[1]  
Arnold L., 1995, LECT NOTES MATH, V1609
[2]  
BOCZKO E, UNPUB POLYGONAL APPR
[3]  
CONLEY C, 1978, CBMS REG C SER M, V38
[4]   A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems [J].
Day, S ;
Junge, O ;
Mischaikow, K .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2004, 3 (02) :117-160
[5]  
Day S, 2003, DYNAM SYST APPL, V12, P87
[6]   THE CONNECTION MATRIX-THEORY FOR MORSE DECOMPOSITIONS [J].
FRANZOSA, RD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :561-592
[7]  
Hiraoka Y., 2003, Transactions of the Japan Society for Industrial and Applied Mathematics, V13, P191
[8]  
Keller H. B., 1987, TATA I FUND RES LECT, V79
[9]  
KLATTE R, 1993, C XSC C CLASS LIB EX
[10]   GLOBAL ASYMPTOTIC DYNAMICS OF GRADIENT-LIKE BISTABLE EQUATIONS [J].
MISCHAIKOW, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) :1199-1224