Comparison of Multiobjective Evolutionary Algorithms: Empirical Results

被引:3849
|
作者
Zitzler, Eckart [1 ]
Deb, Kalyanmoy [2 ]
Thiele, Lothar [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Elect Engn, CH-8092 Zurich, Switzerland
[2] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
基金
瑞士国家科学基金会;
关键词
Evolutionary algorithms; multiobjective optimization; Pareto optimality; test functions; elitism;
D O I
10.1162/106365600568202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e. g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 50 条
  • [21] Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms
    Bezerra, Leonardo C. T.
    Lopez-Ibanez, Manuel
    Stutzle, Thomas
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (03) : 403 - 417
  • [22] Determining Optimal Crop Rotations by Using Multiobjective Evolutionary Algorithms
    Pavon, Ruth
    Brunelli, Ricardo
    von Luecken, Christian
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, PROCEEDINGS, 2009, 5711 : 147 - 154
  • [23] Environmental/economic power dispatch using multiobjective evolutionary algorithms
    Abido, MA
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) : 1529 - 1537
  • [24] A new genetic operator to improve the diversity of the Multiobjective Evolutionary Algorithms
    Freitas, Jamisson
    Garrozi, Cicero
    Valenca, Meuser
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2118 - 2123
  • [25] MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Sanchis, J.
    IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 263 - 268
  • [26] An empirical investigation of single-objective and multiobjective evolutionary algorithms for developer's assignment to bugs
    Karim, Muhammad Rezaul
    Ruhe, Gunther
    Rahman, Md Mainur
    Garousi, Vahid
    Zimmermann, Thomas
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2016, 28 (12) : 1025 - 1060
  • [27] Considerations in engineering parallel multiobjective evolutionary algorithms
    Van Veldhuizen, DA
    Zydallis, JB
    Lamont, GB
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 144 - 173
  • [28] Search Trajectories Networks of Multiobjective Evolutionary Algorithms
    Lavinas, Yuri
    Aranha, Claus
    Ochoa, Gabriela
    APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2022), 2022, : 223 - 238
  • [29] Multiobjective evolutionary algorithms: A survey of the state of the art
    Zhou, Aimin
    Qu, Bo-Yang
    Li, Hui
    Zhao, Shi-Zheng
    Suganthan, Ponnuthurai Nagaratnam
    Zhang, Qingfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 32 - 49
  • [30] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330