Quantum transverse-field Ising model on an infinite tree from matrix product states

被引:45
作者
Nagaj, Daniel [1 ]
Farhi, Edward [1 ]
Goldstone, Jeffrey [1 ]
Shor, Peter [1 ]
Sylvester, Igor [1 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 21期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.77.214431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We give a generalization to an infinite tree geometry of Vidal's infinite time-evolving block decimation (iTEBD) algorithm [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)] for simulating an infinite line of quantum spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the matrix product state ansatz. We observe a second order phase transition, with certain key differences from the transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground state as opposed to the pure Ising model whose ground state is only doubly degenerate.
引用
收藏
页数:15
相关论文
共 19 条
[1]  
Baxter R. J., 1982, EXACTLY SOLVED MODEL, P47
[2]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[3]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[4]   GROUND-STATES OF VBS MODELS ON CAYLEY TREES [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :939-973
[5]  
JORDAN J, ARXIVCONDMAT0703788, P50406
[6]  
LAUMANN C, ARXIV07064391, P50406
[7]   Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states [J].
Murg, V. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW A, 2007, 75 (03)
[8]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[9]  
Perez-Garcia D, 2007, QUANTUM INF COMPUT, V7, P401
[10]  
SACHDEV S, 1999, QUANTUM PHASE TRANSI, P50406