Salicylic acid is a modulator of tobacco and mammalian catalases

被引:249
作者
Durner, J
Klessig, DF
机构
[1] RUTGERS STATE UNIV, WAKSMAN INST, PISCATAWAY, NJ 08855 USA
[2] RUTGERS STATE UNIV, DEPT MOL BIOL & BIOCHEM, PISCATAWAY, NJ 08855 USA
关键词
D O I
10.1074/jbc.271.45.28492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salicylic acid (SA) plays a key role in the establishment of resistance to microbial pathogens in many plants. The discovery that SA inhibits catalase from tobacco led us to suggest that H2O2 acts as second messenger to activate plant defenses, Detailed analyses of SA's interaction with tobacco and mammalian catalases indicate that SA acts as an electron donor for the peroxidative cycle of catalase. When H2O2 fluxes were relatively low (1 mu M/min or less), SA inhibited catalase, consistent with its suggested signaling function via H2O2. However, significant inhibition was only observed at 100 mu M SA or more, a level reached in infected, but not in uninfected, leaves. This inhibition was probably due to siphoning catalase into the slow peroxidative reaction. Surprisingly, SA was also able to protect catalase from inactivation by damaging levels of H2O2 (lower millimolar range), which is generally assumed to reflect accumulation of inactive ferro-oxy intermediates. SA did so by supporting or substituting for the protective function of-catalase-bound NADPH. These results add new features to SA's interaction with heme enzymes and its in vivo redox properties. Thus, SA, in addition to its proposed signaling function, may also have an important antioxidant role in containing oxidative processes associated with plant defense responses.
引用
收藏
页码:28492 / 28501
页数:10
相关论文
共 72 条
[1]  
AEBI H, 1984, METHOD ENZYMOL, V105, P121
[2]   HYDROGEN-PEROXIDE DOES NOT FUNCTION DOWNSTREAM OF SALICYLIC-ACID IN THE INDUCTION OF PR PROTEIN EXPRESSION [J].
BI, YM ;
KENTON, P ;
MUR, L ;
DARBY, R ;
DRAPER, J .
PLANT JOURNAL, 1995, 8 (02) :235-245
[3]   An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan [J].
Bonagura, CA ;
Sundaramoorthy, M ;
Pappa, HS ;
Patterson, WR ;
Poulos, TL .
BIOCHEMISTRY, 1996, 35 (19) :6107-6115
[4]   INDUCTION, MODIFICATION, AND TRANSDUCTION OF THE SALICYLIC-ACID SIGNAL IN PLANT DEFENSE RESPONSES [J].
CHEN, ZX ;
MALAMY, J ;
HENNING, J ;
CONRATH, U ;
SANCHEZCASAS, P ;
SILVA, H ;
RICIGLIANO, J ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4134-4137
[5]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[6]   PURIFICATION AND CHARACTERIZATION OF A SOLUBLE SALICYLIC ACID-BINDING PROTEIN FROM TOBACCO [J].
CHEN, ZX ;
RICIGLIANO, JW ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9533-9537
[7]   2 INDUCERS OF PLANT DEFENSE RESPONSES, 2,6-DICHLOROISONICOTINIC ACID AND SALICYLIC-ACID, INHIBIT CATALASE ACTIVITY IN TOBACCO [J].
CONRATH, U ;
CHEN, ZX ;
RICIGLIANO, JR ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7143-7147
[8]   PIECE DE RESISTANCE - NOVEL CLASSES OF PLANT-DISEASE RESISTANCE GENES [J].
DANGL, JL .
CELL, 1995, 80 (03) :363-366
[9]   CATALASE - PHYSICAL AND CHEMICAL PROPERTIES, MECHANISM OF CATALYSIS, AND PHYSIOLOGICAL ROLE [J].
DEISSEROTH, A ;
DOUNCE, AL .
PHYSIOLOGICAL REVIEWS, 1970, 50 (03) :319-+
[10]   INACTIVATION OF AN ANIMAL AND A FUNGAL CATALASE BY HYDROGEN-PEROXIDE [J].
DELUCA, DC ;
DENNIS, R ;
SMITH, WG .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 320 (01) :129-134