Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions

被引:35
|
作者
Bonin, PML
Bejan, D
Schutt, L
Hawari, J
Bunce, NJ [1 ]
机构
[1] Univ Guelph, Dept Chem & Biochem, Guelph, ON N1G 2W1, Canada
[2] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
关键词
D O I
10.1021/es0305611
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrochemical reduction of RDX, hexahydro-1,3,5-trinitro-1,3,5-triazine, a commercial and military explosive, was examined as a possible remediation technology for treating RDX-contaminated groundwater. A cascade of divided flow-through cells was used, with reticulated vitreous carbon cathodes and IrO(2)/Ti dimensionally stable anodes, initially using acetonitrile/water solutions to increase the solubility of RDX. The major degradation pathway involved reduction of RDX to the corresponding mononitroso compound, followed by ring cleavage to yield formaldehyde and methylenedinitramine. The reaction intermediates underwent further reduction and/or hydrolysis, the net result being the complete transformation of RDX to small molecules. The rate of degradation increased with current density, but the current efficiency was highest at low current densities. The technique was extended successfully both to 100% aqueous solutions of RDX and to an undivided electrochemical cell.
引用
收藏
页码:1595 / 1599
页数:5
相关论文
共 50 条
  • [1] BIODEGRADATION OF HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE
    MCCORMICK, NG
    CORNELL, JH
    KAPLAN, AM
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1981, 42 (05) : 817 - 823
  • [2] Photochemical oxidation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in aqueous phase
    Celin, S. M.
    Pandit, M.
    Kapoor, J. C.
    SAFETY AND SECURITY ENGINEERING III, 2009, 108 : 93 - 101
  • [3] Transformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Permanganate
    Chokejaroenrat, Chanat
    Comfort, Steve D.
    Harris, Clifford E.
    Snow, Daniel D.
    Cassada, David
    Sakulthaew, Chainarong
    Satapanajaru, Tunlawit
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (08) : 3643 - 3649
  • [4] Genotoxicity assessment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
    Reddy, G
    Erexson, GL
    Cifone, MA
    Major, MA
    Leach, GJ
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2005, 24 (06) : 427 - 434
  • [5] Microbial Degradation and Toxicity of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine
    Khan, Muhammad Imran
    Lee, Jaejin
    Park, Joonhong
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (10) : 1311 - 1323
  • [6] Experimental Vapor Pressures of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and Hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)
    Bikelyte, Greta
    Haertel, Martin A. C.
    Klapoetke, Thomas M.
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2020, 45 (10) : 1573 - 1579
  • [7] Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees
    Thompson, PL
    Ramer, LA
    Schnoor, JL
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1999, 18 (02) : 279 - 284
  • [8] Fungal interactions with the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)
    Bayman, P.
    Ritchey, S. D.
    Bennett, J. W.
    Journal of Industrial Microbiology,
  • [9] Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum
    Leslie A. Sherburne
    Joshua D. Shrout
    Pedro J.J. Alvarez
    Biodegradation, 2005, 16 : 539 - 547
  • [10] NITRAMINE CLUSTER IONS FROM HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE
    DOYLE, RJ
    CAMPANA, JE
    JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (20): : 4251 - 4256