Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology

被引:19
作者
Alan Cervantes-Perez, Sergio [1 ]
Thibivillliers, Sandra [1 ,2 ,3 ]
Tennant, Sutton [1 ]
Libault, Marc [1 ,2 ,3 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Dept Agron & Hort, Lincoln, NE 68503 USA
[2] Univ Nebraska, Ctr Biotechnol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Single Cell Genom Core Facil, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Plant; Single -cell RNA-seq; Multiomic technology; Single -cell gene regulatory networks; GENE REGULATORY NETWORKS; CELL TRANSCRIPTOME ATLAS; EXPRESSION; LANDSCAPE; ROOT; DIFFERENTIATION; EVOLUTION; PROFILES; DYNAMICS; MAIZE;
D O I
10.1016/j.plantsci.2022.111486
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes. We will discuss the benefit and limitations of using plant protoplasts vs. nuclei to conduct single-cell RNA-seq experiments on various plant species and organs, the functional annotation of plant cell types based on their transcriptomic profile, the characterization of the dynamic regulation of the plant genes during cell development or in response to environmental stress, the need to characterize and integrate additional layers of -omics datasets to capture new molecular modalities at the single-cell level and reveal their causalities, the deposition and access to single-cell datasets, and the accessibility of this technology to plant scientists.
引用
收藏
页数:7
相关论文
共 78 条
[21]   Science Forum: Vision, challenges and opportunities for a Plant Cell Atlas [J].
Jha, Suryatapa Ghosh ;
Borowsky, Alexander T. ;
Cole, Benjamin J. ;
Fahlgren, Noah ;
Farmer, Andrew ;
Huang, Shao-Shan Carol ;
Karia, Purva ;
Libault, Marc ;
Provart, Nicholas J. ;
Rice, Selena L. ;
Saura-Sanchez, Maite ;
Agarwal, Pinky ;
Ahkami, Amir H. ;
Anderton, Christopher R. ;
Briggs, Steven P. ;
Brophy, Jennifer An ;
Denolf, Peter ;
Di Costanzo, Luigi F. ;
Exposito-Alonso, Moises ;
Giacomello, Stefania ;
Gomez-Cano, Fabio ;
Kaufmann, Kerstin ;
Ko, Dae Kwani ;
Kumar, Sagar ;
Malkovskiy, Andrey, V ;
Nakayama, Naomi ;
Obata, Toshihiro ;
Otegui, Marisa S. ;
Palfalvi, Gergo ;
Quezada-Rodriguez, Elsa H. ;
Singh, Rajveer ;
Uhrig, R. Glen ;
Waese, Jamie ;
Van Wijk, Klaas ;
Wright, R. Clay ;
Ehrhardt, David W. ;
Birnbaum, Kenneth D. ;
Rhee, Seung Y. .
ELIFE, 2021, 10
[22]   The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans [J].
Jones, Robert C. ;
Karkanias, Jim ;
Krasnow, Mark A. ;
Pisco, Angela Oliveira ;
Quake, Stephen R. ;
Salzman, Julia ;
Yosef, Nir ;
Bulthaup, Bryan ;
Brown, Phillip ;
Harper, William ;
Hemenez, Marisa ;
Ponnusamy, Ravikumar ;
Salehi, Ahmad ;
Sanagavarapu, Bhavani A. ;
Spallino, Eileen ;
Concepcion, Waldo ;
Aaron, Ksenia A. ;
Gardner, James M. ;
Kelly, Burnett ;
Neidlinger, Nikole ;
Wang, Zifa ;
Crasta, Sheela ;
Kolluru, Saroja ;
Morri, Maurizio ;
Tan, Serena Y. ;
Travaglini, Kyle J. ;
Xu, Chenling ;
Alcantara-Hernandez, Marcela ;
Almanzar, Nicole ;
Antony, Jane ;
Beyersdorf, Benjamin ;
Burhan, Deviana ;
Calcuttawala, Kruti ;
Carter, Matthew M. ;
Chan, Charles K. F. ;
Chang, Charles A. ;
Chang, Stephen ;
Colville, Alex ;
Culver, Rebecca N. ;
D'Amato, Gaetano ;
Ezran, Camille ;
Galdos, Francisco X. ;
Gillich, Astrid ;
Goodyer, William R. ;
Hang, Yan ;
Hayashi, Alyssa ;
Houshdaran, Sahar ;
Huang, Xianxi ;
Irwin, Juan C. ;
Jang, SoRi .
SCIENCE, 2022, 376 (6594) :711-+
[23]   Gene expression variation in Arabidopsis embryos at single-nucleus resolution [J].
Kao, Ping ;
Schon, Michael A. ;
Mosiolek, Magdalena ;
Enugutti, Balaji ;
Nodine, Michael D. .
DEVELOPMENT, 2021, 148 (13)
[24]  
Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/NMETH.2967, 10.1038/nmeth.2967]
[25]   Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs [J].
Kryuchkova-Mostacci, Nadezda ;
Robinson-Rechavi, Marc .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)
[26]   Cell-type-specific transcriptome and histone modification dynamics during cellular reprogramming in the Arabidopsis stomatal lineage [J].
Lee, Laura R. ;
Wengier, Diego L. ;
Bergmann, Dominique C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (43) :21914-21924
[27]   Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus [J].
Li, Hui ;
Dai, Xinren ;
Huang, Xiong ;
Xu, Mengxuan ;
Wang, Qiao ;
Yan, Xiaojing ;
Sederoff, Ronald R. ;
Li, Quanzi .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (11) :1906-1921
[28]  
Li S, 2021, METHODS MOL BIOL, V2328, P153, DOI 10.1007/978-1-0716-1534-8_9
[29]   Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis [J].
Li, Xiangjie ;
Wang, Kui ;
Lyu, Yafei ;
Pan, Huize ;
Zhang, Jingxiao ;
Stambolian, Dwight ;
Susztak, Katalin ;
Reilly, Muredach P. ;
Hu, Gang ;
Li, Mingyao .
NATURE COMMUNICATIONS, 2020, 11 (01)
[30]  
Liu G., 2022, BIORXIV