Retinomorphic optoelectronic devices for intelligent machine vision

被引:30
作者
Chen, Weilin [1 ,2 ]
Zhang, Zhang [3 ]
Liu, Gang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Shanghai 200240, Peoples R China
[3] Hefei Univ Technol, Sch Microelect, Hefei 230601, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
PEROVSKITE; RETINA; SENSOR;
D O I
10.1016/j.isci.2021.103729
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological visual system can efficiently handle optical information within the retina and visual cortex of the brain, which suggests an alternative approach for the upgrading of the current low-intelligence, large energy consumption, and complex circuitry of the artificial vision system for high-performance edge computing applications. In recent years, retinomorphic machine vision based on the integration of optoelectronic image sensors and processors has been regarded as a promising cant" date to improve this phenomenon. This novel intelligent machine vision technology can perform information preprocessing near or even within the sensor in the front end, thereby reducing the transmission of redundant raw data and improving the efficiency of the back-end processor for high-level computing tasks. In this contribution, we try to present a comprehensive review on the recent progress achieved in this emergent field.
引用
收藏
页数:19
相关论文
共 81 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]  
[Anonymous], 2021, NATNANOTECHNOL, DOI DOI 10.1038/S41565-021-01004-0
[3]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[4]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[5]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[6]   In-sensor computing for machine vision [J].
Chai, Yang .
NATURE, 2020, 579 (7797) :32-33
[7]   Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision [J].
Chen, Qilai ;
Zhang, Ying ;
Liu, Shuzhi ;
Han, Tingting ;
Chen, Xinhui ;
Xu, Yanqing ;
Meng, Ziqi ;
Zhang, Guanglei ;
Zheng, Xuejun ;
Zhao, Jinjin ;
Cao, Guozhong ;
Liu, Gang .
ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (09)
[8]   An Artificial Flexible Visual Memory System Based on an UV-Motivated Memristor [J].
Chen, Shuai ;
Lou, Zheng ;
Chen, Di ;
Shen, Guozhen .
ADVANCED MATERIALS, 2018, 30 (07)
[9]  
Cho S.W., 2021, ADV INTEL SYST, V3, DOI DOI 10.1002/AISY.202000162
[10]   Organic Photodetectors for Next-Generation Wearable Electronics [J].
Chow, Philip C. Y. ;
Someya, Takao .
ADVANCED MATERIALS, 2020, 32 (15)