Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

被引:42
作者
Fernandes, T. [1 ]
Soci, U. P. R. [1 ]
Oliveira, E. M. [1 ]
机构
[1] Univ Sao Paulo, Dept Biodinam Movimento Corpo Humano, Escola Educ Fis & Esporte, Lab Bioquim & Biol Mol Exercicio, BR-05508900 Sao Paulo, Brazil
关键词
Exercise training; Cardiac hypertrophy; Renin-angiotensin system; AT1; receptor; Akt; MicroRNAs; LEFT-VENTRICULAR HYPERTROPHY; RENIN-ANGIOTENSIN SYSTEM; BLOOD-PRESSURE RESPONSE; TYPE-1; RECEPTOR; MYOCARDIAL-INFARCTION; HYPERTENSIVE-RATS; GENE-EXPRESSION; TRANSGENIC MICE; HEART-FAILURE; STRESS;
D O I
10.1590/S0100-879X2011007500112
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, beta-myosin heavy chain and alpha-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
引用
收藏
页码:836 / 847
页数:12
相关论文
共 60 条
[1]   AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats [J].
Barauna, Valerio G. ;
Magalhaes, Flavio C. ;
Krieger, Jose E. ;
Oliveira, Edilamar M. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2008, 295 (02) :R381-R387
[2]   Effects of Resistance Training on Ventricular Function and Hypertrophy in a Rat Model [J].
Barauna, Valerio Garrone ;
Rosa, Kaleizu Teodoro ;
Irigoyen, Maria Claudia ;
de Oliveira, Edilamar Menezes .
CLINICAL MEDICINE & RESEARCH, 2007, 5 (02) :114-120
[3]   Cardiovascular adaptations in rats submitted to a resistance-training model [J].
Barauna, VG ;
Junior, MLB ;
Rosa, LFBC ;
Casarini, DE ;
Krieger, JE ;
Oliveira, EM .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2005, 32 (04) :249-254
[4]   Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster [J].
Boettger, Thomas ;
Beetz, Nadine ;
Kostin, Sawa ;
Schneider, Johanna ;
Krueger, Marcus ;
Hein, Lutz ;
Braun, Thomas .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (09) :2634-2647
[5]   MicroRNA-133 controls cardiac hypertrophy [J].
Care, Alessandra ;
Catalucci, Daniele ;
Felicetti, Federica ;
Bonci, Desiree ;
Addario, Antonio ;
Gallo, Paolo ;
Bang, Marie-Louise ;
Segnalini, Patrizia ;
Gu, Yusu ;
Dalton, Nancy D. ;
Elia, Leonardo ;
Latronico, Michael V. G. ;
Hoydal, Morten ;
Autore, Camillo ;
Russo, Matteo A. ;
Dorn, Gerald W., II ;
Ellingsen, Oyvind ;
Ruiz-Lozano, Pilar ;
Peterson, Kirk L. ;
Croce, Carlo M. ;
Peschle, Cesare ;
Condorelli, Gianluigi .
NATURE MEDICINE, 2007, 13 (05) :613-618
[6]  
Claessens C, 1999, ACTA CARDIOL, V54, P317
[7]   Angiotensin-converting enzyme 2 is an essential regulator of heart function [J].
Crackower, MA ;
Sarao, R ;
Oudit, GY ;
Yagil, C ;
Kozieradzki, I ;
Scanga, SE ;
Oliveira-dos-Santos, AJ ;
da Costa, J ;
Zhang, LY ;
Pei, Y ;
Scholey, J ;
Ferrario, CM ;
Manoukian, AS ;
Chappell, MC ;
Backx, PH ;
Yagil, Y ;
Penninger, JM .
NATURE, 2002, 417 (6891) :822-828
[8]   Cardiovascular adaptive responses in rats submitted to moderate resistance training [J].
Cypriano Ervati Pinter, Rita de Cassia ;
Simao Padilha, Alessandra ;
Menezes de Oliveira, Edilamar ;
Valentim Vassallo, Dalton ;
de Fucio Lizardo, Juliana Hott .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2008, 103 (05) :605-613
[9]   Akt1 is required for physiological cardiac growth [J].
DeBosch, B ;
Treskov, I ;
Lupu, TS ;
Weinheimer, C ;
Kovacs, A ;
Courtois, M ;
Muslin, AJ .
CIRCULATION, 2006, 113 (17) :2097-2104
[10]  
DOCARMO EC, 2011, MED SCI SPORTS EXERC