Robust Subspace Clustering With Low-Rank Structure Constraint

被引:22
作者
Nie, Feiping [1 ,2 ]
Chang, Wei [1 ,2 ]
Hu, Zhanxuan [1 ,2 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Robustness; Clustering algorithms; Data models; Task analysis; Linear programming; Minimization; Sparse matrices; Subspace clustering; low-rank structure; singular value decomposition (SVD); piecewise function; MOTION SEGMENTATION; MULTIBODY FACTORIZATION; MATRIX COMPLETION; FACE RECOGNITION;
D O I
10.1109/TKDE.2020.2995896
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel low-rank structural model is proposed for segmenting data drawn from a high-dimensional space. Our method is based on the fact that all groups clustered from a high-dimensional dataset are distributed in multiple low-rank subspaces. In general, it's a very difficult task to find the low-rank structures hidden in data. Different from the classical sparse subspace clustering (SSC) and low-rank representation (LRR) which all take two steps including building the affinity matrix and spectral clustering, we introduce a new rank constraint into our model. This constraint allows our model to learn a subspace indicator which can capture different clusters directly from the data without any postprocessing. To further approximate the rank constraint, a piecewise function is utilized as the relaxing item for the proposed model. Besides, under the subspace indicator constraints, the integer programming problem is avoided, which makes our algorithm more efficient and scalable. In addition, we prove the convergence of the proposed algorithm in theory and further discuss the general case in which subspaces don't pass through the origin. Experiment results on both synthetic and real-world datasets demonstrate that our algorithm significantly outperforms the state-of-the-art methods.
引用
收藏
页码:1404 / 1415
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 1998, THE AR FACE DATABASE
[2]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[3]   Matrix Completion With Noise [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :925-936
[4]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[5]   A multibody factorization method for independently moving objects [J].
Costeira, JP ;
Kanade, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (03) :159-179
[6]   Robust Recovery of Signals From a Structured Union of Subspaces [J].
Eldar, Yonina C. ;
Mishali, Moshe .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (11) :5302-5316
[7]  
Elhamifar E, 2009, PROC CVPR IEEE, P2782
[8]   Normalized Mutual Information Feature Selection [J].
Estevez, Pablo. A. ;
Tesmer, Michel ;
Perez, Claudio A. ;
Zurada, Jacek A. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (02) :189-201
[9]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[10]   Multibody grouping from motion images [J].
Gear, CW .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (02) :133-150