Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations

被引:55
作者
Hsiao, Po-Tsung [1 ,2 ]
Liou, Yong-Jin [1 ,2 ]
Teng, Hsisheng [1 ,2 ,3 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
关键词
RECOMBINATION; FABRICATION; IMPEDANCE; FILMS; SEMICONDUCTORS; PERFORMANCE; ROUTE;
D O I
10.1021/jp202681c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2 nanotube arrays (NTA), of 17-37 mu m in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 mu m thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 mu m NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.
引用
收藏
页码:15018 / 15024
页数:7
相关论文
共 40 条
[1]   Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J].
Adachi, Motonari ;
Sakamoto, Masaru ;
Jiu, Jinting ;
Ogata, Yukio ;
Isoda, Seiji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13872-13880
[2]  
Bisquert J, 2002, J PHYS CHEM B, V106, P325, DOI 10.1021/jp01194lg
[3]   Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells [J].
Bisquert, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (24) :5360-5364
[4]   An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays [J].
Chen, Jian-Ging ;
Chen, Chia-Yuan ;
Wu, Chun-Guey ;
Lin, Chia-Yu ;
Lai, Yi-Hsuan ;
Wang, Chun-Chieh ;
Chen, Hsin-Wei ;
Vittal, R. ;
Ho, Kuo-Chuan .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (34) :7201-7207
[5]   Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting [J].
Chen, Qingwei ;
Xu, Dongsheng ;
Wu, Zhongyun ;
Liu, Zhongfan .
NANOTECHNOLOGY, 2008, 19 (36)
[6]   Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells [J].
Chen, Qingwei ;
Xu, Dongsheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (15) :6310-6314
[7]   A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells [J].
Das, Jaykrushna ;
Freitas, Flavio S. ;
Evans, Ivana R. ;
Nogueira, Ana F. ;
Khushalani, Deepa .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (21) :4425-4431
[8]   Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids [J].
Fabregat-Santiago, Francisco ;
Bisquert, Juan ;
Palomares, Emilio ;
Otero, Luis ;
Kuang, Daibin ;
Zakeeruddin, Shaik M. ;
Gratzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (17) :6550-6560
[9]   Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells [J].
Franco, G ;
Gehring, J ;
Peter, LM ;
Ponomarev, EA ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :692-698
[10]   Electrons in nanostructured TiO2 solar cells:: transport, recombination and photovoltaic properties [J].
Frank, AJ ;
Kopidakis, N ;
van de Lagemaat, J .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1165-1179