Integrated near-field thermo-photovoltaics for heat recycling

被引:110
作者
Bhatt, Gaurang R. [1 ]
Zhao, Bo [2 ]
Roberts, Samantha [1 ]
Datta, Ipshita [1 ]
Mohanty, Aseema [1 ]
Lin, Tong [1 ]
Hartmann, Jean-Michel [3 ]
St-Gelais, Raphael [4 ]
Fan, Shanhui [2 ]
Lipson, Michal [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Stanford Univ, Ginzton Lab, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
[4] Univ Ottawa, Dept Mech Engn, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
WASTE HEAT; POWER SENSOR;
D O I
10.1038/s41467-020-16197-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Energy transferred via thermal radiation between two surfaces separated by nanometer distances can be much larger than the blackbody limit. However, realizing a scalable platform that utilizes this near-field energy exchange mechanism to generate electricity remains a challenge. Here, we present a fully integrated, reconfigurable and scalable platform operating in the near-field regime that performs controlled heat extraction and energy recycling. Our platform relies on an integrated nano-electromechanical system that enables precise positioning of a thermal emitter within nanometer distances from a room-temperature germanium photodetector to form a thermo-photovoltaic cell. We demonstrate over an order of magnitude enhancement of power generation (P(gen similar to)1.25 mu Wcm(-2)) in our thermo-photovoltaic cell by actively tuning the gap between a hot-emitter (T-E similar to 880K) and the cold photodetector (T-D similar to 300K) from similar to 500 nm down to similar to 100nm. Our nano-electromechanical system consumes negligible tuning power (P-gen/P-NEMS similar to 10(4)) and relies on scalable silicon-based process technologies. Designing a scalable platform to generate electricity from the energy exchange mechanism between two surfaces separated by nanometer distances remains a challenge. Here, the authors demonstrate reconfigurable, scalable and fully integrated near-field thermo-photovoltaics for on-demand heat recycling.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Review Article: Stress in thin films and coatings: Current status, challenges, and prospects [J].
Abadias, Gregory ;
Chason, Eric ;
Keckes, Jozef ;
Sebastiani, Marco ;
Thompson, Gregory B. ;
Barthel, Etienne ;
Doll, Gary L. ;
Murray, Conal E. ;
Stoessel, Chris H. ;
Martinu, Ludvik .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02)
[2]   Review of near-field thermal radiation and its application to energy conversion [J].
Basu, S. ;
Zhang, Z. M. ;
Fu, C. J. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2009, 33 (13) :1203-1232
[3]   Maximum energy transfer in near-field thermal radiation at nanometer distances [J].
Basu, S. ;
Zhang, Z. M. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[4]   Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap [J].
Bernardi, Michael P. ;
Milovich, Daniel ;
Francoeur, Mathieu .
NATURE COMMUNICATIONS, 2016, 7
[5]   Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field [J].
Biehs, S. -A. ;
Tschikin, M. ;
Ben-Abdallah, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[6]   Near-field heat transfer between a nanoparticle and a rough surface [J].
Biehs, S. -A. ;
Greffet, J. -J. .
PHYSICAL REVIEW B, 2010, 81 (24)
[7]   Viability of dynamic cooling control in a data center environment [J].
Boucher, Timothy D. ;
Auslander, David M. ;
Bash, Cullen E. ;
Federspiel, Clifford C. ;
Patel, Chandrakant D. .
JOURNAL OF ELECTRONIC PACKAGING, 2006, 128 (02) :137-144
[8]   Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies [J].
Brueckner, Sarah ;
Liu, Selina ;
Miro, Laia ;
Radspieler, Michael ;
Cabeza, Luisa F. ;
Laevemanna, Eberhard .
APPLIED ENERGY, 2015, 151 :157-167
[9]  
Davidson A, 2008, WASTE HEAT RECOVERY, DOI DOI 10.2172/1218716
[10]   A near-field radiative heat transfer device [J].
DeSutter, John ;
Tang, Lei ;
Francoeur, Mathieu .
NATURE NANOTECHNOLOGY, 2019, 14 (08) :751-+