Survival trees for analyzing clinical outcome in lung adenocarcinomas based on gene expression profiles:: Identification of neogenin and diacylglycerol kinase α expression as critical factors

被引:25
作者
Berrar, D [1 ]
Sturgeon, B [1 ]
Bradbury, I [1 ]
Downes, CS [1 ]
Dubitzky, W [1 ]
机构
[1] Univ Ulster, Sch Biomed Sci, Bioinformat Res Grp, Fac Life & Hlth Sci, Coleraine BT52 1SA, Londonderry, North Ireland
关键词
survival tree; microarrays; lung adenocarcinomas; machine learning;
D O I
10.1089/cmb.2005.12.534
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present survival trees as an exploratory tool for revealing new insights into gene expression profiles in combination with clinical patient data. Survival trees partition the patient data studied into groups with similar survival outcomes and identify characteristic genetic profiles within these groups. We demonstrate the application of survival trees in a study involving the expression profiles of 3,588 genes in 211 lung adenocarcinoma patients. The survival tree identified a group of early-stage cancer patients with relatively low survival rates and another group of advanced-stage patients with remarkably good survival outcome. For both groups, the tree identified characteristic expression profiles of genes that might play a role in cancerogenesis and disease progression, notably the genes for the netrin receptor neogenin and the Ras/Rho kinase modulator diacylglycerol kinase alpha.
引用
收藏
页码:534 / 544
页数:11
相关论文
共 28 条
  • [1] Whole-genome expression analysis: challenges beyond clustering
    Altman, RB
    Raychaudhuri, S
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (03) : 340 - 347
  • [2] Bair E., 2003, ACM SIGKDD EXPLOR NE, V5, P48
  • [3] Gene-expression profiles predict survival of patients with lung adenocarcinoma
    Beer, DG
    Kardia, SLR
    Huang, CC
    Giordano, TJ
    Levin, AM
    Misek, DE
    Lin, L
    Chen, GA
    Gharib, TG
    Thomas, DG
    Lizyness, ML
    Kuick, R
    Hayasaka, S
    Taylor, JMG
    Iannettoni, MD
    Orringer, MB
    Hanash, S
    [J]. NATURE MEDICINE, 2002, 8 (08) : 816 - 824
  • [4] BERRAR D, 2005, P INT C CRIT ASS MIC, P147
  • [5] Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    Bhattacharjee, A
    Richards, WG
    Staunton, J
    Li, C
    Monti, S
    Vasa, P
    Ladd, C
    Beheshti, J
    Bueno, R
    Gillette, M
    Loda, M
    Weber, G
    Mark, EJ
    Lander, ES
    Wong, W
    Johnson, BE
    Golub, TR
    Sugarbaker, DJ
    Meyerson, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) : 13790 - 13795
  • [6] A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    Bolstad, BM
    Irizarry, RA
    Åstrand, M
    Speed, TP
    [J]. BIOINFORMATICS, 2003, 19 (02) : 185 - 193
  • [7] Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways
    Borczuk, AC
    Gorenstein, L
    Walter, KL
    Assaad, AA
    Wang, LQ
    Powell, CA
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (05) : 1949 - 1960
  • [8] Breiman L., 1998, CLASSIFICATION REGRE
  • [9] Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer
    Chang, JC
    Wooten, EC
    Tsimelzon, A
    Hilsenbeck, SG
    Gutierrez, MC
    Elledge, R
    Mohsin, S
    Osborne, CK
    Chamness, GC
    Allred, DC
    O'Connell, P
    [J]. LANCET, 2003, 362 (9381) : 362 - 369
  • [10] EXPONENTIAL SURVIVAL TREES
    DAVIS, RB
    ANDERSON, JR
    [J]. STATISTICS IN MEDICINE, 1989, 8 (08) : 947 - 961