Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain

被引:219
作者
Fuchs, D. [1 ]
Arac, E. [1 ,2 ]
Pinta, C. [1 ,2 ]
Schuppler, S. [1 ]
Schneider, R. [1 ]
von Loehneysen, H. [1 ,2 ]
机构
[1] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevB.77.014434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ferromagnetic order can be induced in LaCoO3 (LCO) thin films by epitaxial strain. Here, we show that the magnetic properties can be "tuned" by epitaxial strain imposed on LCO thin films by the epitaxial growth on various substrate materials, i.e., (001) oriented SrLaAlO4, LaAlO3, SrLaGaO4, (LaAlO3)(0.3)(Sr2AlTaO6)(0.7), and SrTiO3. The lattice mismatch at room temperature of the in-plane lattice parameters between the substrate, a(s), and bulk LCO, a(b), ranges from -1.31% to +2.63%. Single-phase, < 001 > oriented LCO thin films were grown by pulsed laser deposition on all these substrates. Due to the difference of the thermal-expansion coefficients between LCO and the substrates, the films experience an additional tensile strain of about +0.3% during the cooling process after the deposition at T-s=650 degrees C. The film lattice parameters display an elastic behavior, i.e., an increase of the in-plane film lattice parameter with increasing a(s). From the ratio between the out-of-plane and in-plane strain, we obtain a Poisson ratio of nu approximate to 1/3. All films show a ferromagnetic transition as determined from magnetization measurements. The magnetization increases strongly with increasing tensile strain, whereas the transition temperature T-C after a rapid initial rise appears to saturate at T-C approximate to 85 K above a=3.86 angstrom. The effective magnetic moment mu(eff) in the paramagnetic state increases almost linearly as a function of the mean lattice parameter < a >, indicating an enhanced population of higher spin states, i.e., intermediate- or high-spin states. The experimental results are discussed in terms of a decrease of the octahedral-site rotation with increasing tensile strain.
引用
收藏
页数:8
相关论文
共 31 条
  • [1] [Anonymous], 1999, HIGH RESOLUTION XRAY
  • [2] BEROVSKI M, 2003, J CRYST GROWTH, V257, P146
  • [3] THERMAL-PROPERTIES OF CANDALO4 AND SRLAALO4 SINGLE-CRYSTALS
    BYSZEWSKI, P
    DOMAGALA, J
    FINKFINOWICKI, J
    PAJACZKOWSKA, A
    [J]. MATERIALS RESEARCH BULLETIN, 1992, 27 (04) : 483 - 490
  • [4] High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites
    deLigny, D
    Richet, P
    [J]. PHYSICAL REVIEW B, 1996, 53 (06): : 3013 - 3022
  • [5] TEMPERATURE STUDY OF LATTICE-CONSTANTS AND RAMAN-SCATTERING OF SRLAGAO4 SINGLE-CRYSTAL
    DROZDOWSKI, M
    DOMAGALA, J
    KOZIELSKI, M
    SZYBOWICZ, M
    PAJACZKOWSKA, A
    [J]. SOLID STATE COMMUNICATIONS, 1995, 96 (10) : 785 - 788
  • [6] Proton-conducting ceramics as electrode/electrolyte - materials for SOFCs: Preparation, mechanical and thermal-mechanical properties of thermal sprayed coatings, material combination and stacks
    Fehringer, G
    Janes, S
    Wildersohn, M
    Clasen, R
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (05) : 705 - 715
  • [7] Ferromagnetic order in epitaxially strained LaCoO3 thin films
    Fuchs, D.
    Pinta, C.
    Schwarz, T.
    Schweiss, P.
    Nagel, P.
    Schuppler, S.
    Schneider, R.
    Merz, M.
    Roth, G.
    von Loehneysen, H.
    [J]. PHYSICAL REVIEW B, 2007, 75 (14)
  • [8] Ferromagnetic order in the electron-doped system La1-xCexCoO3 -: art. no. 014466
    Fuchs, D
    Schweiss, P
    Adelmann, P
    Schwarz, T
    Schneider, R
    [J]. PHYSICAL REVIEW B, 2005, 72 (01):
  • [9] Finite-size shift of the Curie temperature of ferromagnetic lanthanum cobaltite thin films -: art. no. 092406
    Fuchs, D
    Schwarz, T
    Morán, O
    Schweiss, P
    Schneider, R
    [J]. PHYSICAL REVIEW B, 2005, 71 (09)
  • [10] Harrison W.A., 1980, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond