General Constructions of Optimal Variable-Weight Optical Orthogonal Codes

被引:28
作者
Jiang, Jing [1 ]
Wu, Dianhua [1 ,2 ]
Fan, Pingzhi [2 ]
机构
[1] Guangxi Normal Univ, Dept Math, Guilin 541004, Guangxi, Peoples R China
[2] SW Jiaotong Univ, Keylab Informat Coding & Transmiss, Chengdu 610031, Sichuan, Peoples R China
关键词
Cyclic packing; optical orthogonal code (OOC); perfect base PB(v); perfect difference family; quadruple system QS(v); variable-weight OOC; 1; DIFFERENCE-FAMILIES; MULTIPLE-ACCESS TECHNIQUES; COMBINATORIAL CONSTRUCTIONS; PERFORMANCE ANALYSIS; FIBER NETWORKS; RADAR ARRAYS; PRIME POWER; EXISTENCE; DESIGNS; BOUNDS;
D O I
10.1109/TIT.2011.2146110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Variable-weight optical orthogonal code (OOC) was introduced by Yang for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, four general constructions for optimal cyclic packings and optimal variable-weight OOCs are presented. Many new infinite classes of optimal (v, W, 1,Q)-OOCs are obtained. New infinite classes of optimal (v, W, 1,Q)-OOCs for vertical bar W vertical bar >= 4 are easily obtained by the constructions.
引用
收藏
页码:4488 / 4496
页数:9
相关论文
共 49 条
[1]   Crucial words and the complexity of some extremal problems for sets of prohibited words [J].
Evdokimov, A ;
Kitaev, S .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (02) :273-289
[2]  
Abel RJR., 2006, Handbook of Combinatorial Designs, V2, P392
[3]  
Beth T., 1986, Design Theory
[4]   CONSTRUCTIONS FOR OPTIMAL CONSTANT WEIGHT CYCLICALLY PERMUTABLE CODES AND DIFFERENCE-FAMILIES [J].
BITAN, S ;
ETZION, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :77-87
[5]  
BOLOMB SW, 1982, DIGITAL COMMUNICATIO
[6]   Cyclic designs with block size 4 and related optimal optical orthogonal codes [J].
Buratti, M .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :111-125
[7]   Further progress on difference families with block size 4 or 5 [J].
Buratti, Marco ;
Pasotti, Anita .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (01) :1-20
[8]   Optimal (4up, 5, 1) optical orthogonal codes [J].
Chang, YX ;
Ji, L .
JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (05) :346-361
[9]   Combinatorial constructions of optimal optical orthogonal codes with weight 4 [J].
Chang, YX ;
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) :1283-1292
[10]   Constructions for optimal optical orthogonal codes [J].
Chang, YX ;
Miao, Y .
DISCRETE MATHEMATICS, 2003, 261 (1-3) :127-139