Cucheb: A GPU implementation of the filtered Lanczos procedure

被引:13
作者
Aurentz, Jared L. [1 ]
Kalantzis, Vassilis [2 ]
Saad, Yousef [2 ]
机构
[1] Univ Autonoma Madrid, Inst Ciencias Matemat, Campus Cantoblanco, E-28049 Madrid, Spain
[2] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
GPU; Eigenvalues; Eigenvectors; Quantum mechanics; Electronic structure calculations; Density functional theory; ELECTRONIC-STRUCTURE CALCULATIONS; ALGORITHM; RESTART; CHEBYSHEV; CONVERGENCE; ITERATIONS;
D O I
10.1016/j.cpc.2017.06.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi: http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 340
页数:9
相关论文
共 51 条
[1]  
[Anonymous], 2008, 2008 IEEE Hot Chips 20 Symposium (HCS), DOI 10.1109/HOTCHIPS.2008.7476516
[2]  
[Anonymous], LECT NOTES PHYS
[4]  
Aurentz J. L., 2014, THESIS
[5]  
Aurentz J.L., 2016, Cucheb
[6]   IRBL: An implicitly restarted block-lanczos method for large-scale Hermitian eigenproblems [J].
Baglama, J ;
Calvetti, D ;
Reichel, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05) :1650-1677
[7]   Convergence of polynomial restart Krylov methods for eigenvalue computations [J].
Beattie, CA ;
Embree, M ;
Sorensen, DC .
SIAM REVIEW, 2005, 47 (03) :492-515
[8]   Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory [J].
Bekas, C. ;
Kokiopoulou, E. ;
Saad, Yousef .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :397-418
[9]  
Bell N, 2009, PROCEEDINGS OF THE CONFERENCE ON HIGH PERFORMANCE COMPUTING NETWORKING, STORAGE AND ANALYSIS
[10]   An optimized and scalable eigensolver for sequences of eigenvalue problems [J].
Berljafa, Mario ;
Wortmann, Daniel ;
Di Napoli, Edoardo .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (04) :905-922