Recovery of spent LiCoO2 cathode material: Thermodynamic analysis and experiments for precipitation and separation of elements

被引:19
作者
He, Shichao [1 ]
Xiang, Wei [1 ]
He, Wenrui [1 ]
Yu, Feng [1 ]
Liu, Zhihong [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
关键词
Spent lithium-ion batteries; Recovery of valuable metal; Thermodynamic analysis; Precipitation and separation of elements; LiCoO(2 )cathode material; LITHIUM-ION BATTERIES; EFFICIENT PROCESS; LIMN2O4; LI; EXTRACTION; COBALT; CO;
D O I
10.1016/j.cej.2021.132371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A process for recycling spent LiCoO2 cathode material doped with Mn from spent LiCoO2 lithium-ion batteries is proposed in this paper. Based on the leachate obtained during calcination and water leaching, this report comprises precipitation thermodynamics analysis and separation experiments results. The results of precipitation thermodynamic analysis demonstrate that NH4HCO3 cannot achieve separation of Mn and Co in the waterleaching solution system, while using (NH4)2S2O8 can induce preferential oxidative precipitation of the Mn in the system at pH < 2 and thus achieve the separation of Mn. Moreover, some factors clearly influence Co2+ precipitation, particularly total NH4+/NH3 concentrations and the excess precipitant in the system. The results of the experiments demonstrate that the optimal conditions are a reaction temperature of 90 <degrees>C, (NH4)2S2O8 excess coefficient of 1.5, and LC-2 leachate, which yield a Mn precipitation percentage of 99.95% and only 0.85 mg/L Mn is left in the solution. After the separation of Mn from LC-2 leachate, a precipitation temperature of 45 degrees C and NH4HCO3 precipitant excess coefficient of 2.5 yield a Co precipitation percentage of 98.03% and the absence of Li2CO3 precipitation. Then, a Li-rich solution containing Li+/NH4+ is obtained after circulating enrichment and thorough Co removal. Meanwhile, a sulfate compound is produced by evaporation and crystallisation, which is then calcined at 550 degrees C for 45 min to obtain the Li2SO4 product.
引用
收藏
页数:15
相关论文
共 49 条
  • [1] Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review
    Alvial-Hein, Guillermo
    Mahandra, Harshit
    Ghahreman, Ahmad
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 297
  • [2] An innovative approach to recover the metal values from spent lithium-ion batteries
    Barik, S. P.
    Prabaharan, G.
    Kumar, B.
    [J]. WASTE MANAGEMENT, 2016, 51 : 222 - 226
  • [3] Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation
    Cai, Guoqiang
    Fung, Ka Y.
    Ng, Ka M.
    Wibowo, Christianto
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (47) : 18245 - 18259
  • [4] Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries
    Chen, Mengyuan
    Ma, Xiaotu
    Chen, Bin
    Arsenault, Renata
    Karlson, Peter
    Simon, Nakia
    Wang, Yan
    [J]. JOULE, 2019, 3 (11) : 2622 - 2646
  • [5] One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders
    Delacourt, C
    Poizot, P
    Morcrette, M
    Tarascon, JM
    Masquelier, C
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (01) : 93 - 99
  • [6] Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations
    Di Lecce, Daniele
    Verrelli, Roberta
    Hassoun, Jusef
    [J]. GREEN CHEMISTRY, 2017, 19 (15) : 3442 - 3467
  • [7] A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries
    dos Santos, Caroline Santana
    Alves, Joao Carlos
    da Silva, Stephany Pires
    Sita, Lucas Evangelista
    Catarini da Silva, Paulo Rogerio
    de Almeida, Lucio Cesar
    Scarminio, Jair
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2019, 362 : 458 - 466
  • [8] Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries
    Dutta, Deblina
    Kumari, Archana
    Panda, Rekha
    Jha, Soni
    Gupta, Divika
    Goel, Sudha
    Jha, Manis Kumar
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 200 : 327 - 334
  • [9] Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects
    Fan, Ersha
    Li, Li
    Wang, Zhenpo
    Lin, Jiao
    Huang, Yongxin
    Yao, Ying
    Chen, Renjie
    Wu, Feng
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 7020 - 7063
  • [10] Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique
    Garcia, E. M.
    Santos, J. S.
    Pereira, E. C.
    Freitas, M. B. J. G.
    [J]. JOURNAL OF POWER SOURCES, 2008, 185 (01) : 549 - 553