Data handling in data fusion: Methodologies and applications

被引:120
作者
Azcarate, Silvana M. [1 ,2 ,3 ]
Rios-Reina, Rocio [4 ]
Amigo, Jose M. [5 ,6 ]
Goicoechea, Ector C. [3 ,7 ]
机构
[1] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Av Uruguay 151, RA-6300 Santa Rosa, La Pampa, Argentina
[2] Inst Ciencias La Tierra & Ambient La Pampa INCITA, Av Uruguay 151, RA-6300 Santa Rosa, La Pampa, Argentina
[3] Consejo Nacl Invest Cient & Tecn CONICET, Godoy Cruz 2290,CP C1425FQB, Buenos Aires, DF, Argentina
[4] Inst Grasa La CSIC, Campus Univ Pablo Ola,Edificio 46,Ctra Utrera, Seville 41013, Spain
[5] IKERBASQUE, Basque Fdn Sci, Bilbao 48011, Spain
[6] Univ Basque Country UPV EHU, Dept Anal Chem, POB 644, Bilbao 48080, Basque Country, Spain
[7] Univ Nacl Del Litoral, Fac Bioquim & Ciencias Biol, Lab Desarrollo Anal & Quimiometria, Ciudad Univ, RA-3000 Santa Fe, NM, Argentina
关键词
Data fusion strategies; Low-level; Mid-level; High-level; Multilevel; Data structure; SPECTROSCOPY DATA FUSION; VIRGIN OLIVE OIL; GEOGRAPHICAL TRACEABILITY; CLASSIFICATION; AUTHENTICATION; STRATEGY; UV; DISCRIMINATION; ORIGIN; TONGUE;
D O I
10.1016/j.trac.2021.116355
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The use of data fusion methodologies has increased at the same rhythm as the capability of modern analytical laboratories of measuring sample from multiple sources. Almost all data fusion strategies can be grouped into three levels, they fuse the data differently with the sole aim of obtaining a better response (qualitative or quantitative) than that obtained by the instruments individually. One of the major key points for the data fusion methodologies to succeed is the understanding of the data structure obtained from a particular instrument. This point is not exhaustively commented in the literature focused on data fusion, sometimes paying too much attention to the algorithms instead. This manuscript explains data fusion from the structure of the different data obtained by different analytical platforms. Special attention will be given to the nature of the data and the relationships between the samples and the variables, as well as within the variables. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 64 条
[1]   Detection of Fruit Pulp Adulteration Using Multivariate Analysis: Comparison of NIR, MIR and Data Fusion Performance [J].
Alamar, Priscila D. ;
Carames, Elem T. S. ;
Poppi, Ronei J. ;
Pallone, Juliana A. L. .
FOOD ANALYTICAL METHODS, 2020, 13 (06) :1357-1365
[2]   Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications [J].
Azcarate, Silvana M. ;
de Araujo Gomes, Adriano ;
Munoz de la Pena, Arsenio ;
Goicoechea, Hector C. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2018, 107 :151-168
[3]  
Ballabio D., 2019, Data Handl. Sci. Technol, V31, P129, DOI [DOI 10.1016/B978-0-444-63984-4.00005-3, DOI 10.1016/B978-0-444-64179-3.00005-0]
[4]   Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey [J].
Ballabio, Davide ;
Robotti, Elisa ;
Grisoni, Francesca ;
Quasso, Fabio ;
Bobba, Marco ;
Vercelli, Serena ;
Gosetti, Fabio ;
Calabrese, Giorgio ;
Sangiorgi, Emanuele ;
Orlandi, Marco ;
Marengo, Emilio .
FOOD CHEMISTRY, 2018, 266 :79-89
[5]   Data fusion of UPLC data, NIR spectra and physicochemical parameters with chemometrics as an alternative to evaluating kombucha fermentation [J].
Barbosa, Cosme Damiao ;
Baqueta, Michel Rocha ;
Rodrigues Santos, Wildon Cesar ;
Gomes, Dhionne ;
Alvarenga, Veronica O. ;
Teixeira, Paula ;
Albano, Helena ;
Rosa, Carlos Augusto ;
Valderrama, Patricia ;
Lacerda, Inayara C. A. .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2020, 133
[6]   Extension of SO-PLS to multi-way arrays: SO-N-PLS [J].
Biancolillo, Alessandra ;
Naes, Tormod ;
Bro, Rasmus ;
Mage, Ingrid .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 164 :113-126
[7]   Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression [J].
Borras, Eva ;
Ferre, Joan ;
Bogue, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Calvo, Angels ;
Busto, Olga .
TALANTA, 2016, 155 :116-123
[8]   Data fusion methodologies for food and beverage authentication and quality assessment - A review [J].
Borras, Eva ;
Ferre, Joan ;
Boque, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Busto, Olga .
ANALYTICA CHIMICA ACTA, 2015, 891 :1-14
[9]   E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach [J].
Buratti, Susanna ;
Malegori, Cristina ;
Benedetti, Simona ;
Oliveri, Paolo ;
Giovanelli, Gabriella .
TALANTA, 2018, 182 :131-141
[10]   Identification of Luminescent Markers for Gunshot Residues: Fluorescence, Raman Spectroscopy, and Chemometrics [J].
Carneiro, Caroline R. ;
Silva, Carolina S. ;
de Carvalho, Marcela Albino ;
Pimentel, Maria Fernanda ;
Talhavini, Marcio ;
Weber, Ingrid T. .
ANALYTICAL CHEMISTRY, 2019, 91 (19) :12444-12452