Noise-robust algorithm for identifying functionally associated biclusters from gene expression data

被引:12
作者
Ahn, Jaegyoon [1 ]
Yoon, Youngmi [2 ]
Park, Sanghyun [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul 120749, South Korea
[2] Gachon Univ Med & Sci, Div Informat Technol, Inchon, South Korea
关键词
Knowledge discovery; Data mining; Biclustering; Gene expression data analysis; Microarray analysis;
D O I
10.1016/j.ins.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Biclusters are subsets of genes that exhibit similar behavior over a set of conditions. A biclustering algorithm is a useful tool for uncovering groups of genes involved in the same cellular processes and groups of conditions under which these processes take place. In this paper, we propose a polynomial time algorithm to identify functionally highly correlated biclusters. Our algorithm identifies (1) gene sets that simultaneously exhibit additive, multiplicative, and combined patterns and allow high levels of noise, (2) multiple, possibly overlapped, and diverse gene sets, (3) biclusters that simultaneously exhibit negatively and positively correlated gene sets, and (4) gene sets for which the functional association is very high. We validate the level of functional association in our method by using the GO database, protein-protein interactions and KEGG pathways. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 449
页数:15
相关论文
共 26 条
[1]   BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments [J].
Al-Shahrour, F ;
Minguez, P ;
Vaquerizas, JM ;
Conde, L ;
Dopazo, J .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W460-W464
[2]   Random walk biclustering for microarray data [J].
Angiulli, Fabrizio ;
Cesario, Eugenio ;
Pizzuti, Clara .
INFORMATION SCIENCES, 2008, 178 (06) :1479-1497
[3]  
[Anonymous], 2002, Proceedings of the 2002 ACM SIGMOD international conference on Management of data, DOI DOI 10.1145/564691.564737
[4]  
Aradhya VNM, 2010, LECT N BIOINFORMAT, V6160, P254
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data [J].
Ayadi, Wassim ;
Elloumi, Mourad ;
Hao, Jin-Kao .
BIODATA MINING, 2009, 2
[7]   BicAT: a biclustering analysis toolbox [J].
Barkow, S ;
Bleuler, S ;
Prelic, A ;
Zimmermann, P ;
Zitzler, E .
BIOINFORMATICS, 2006, 22 (10) :1282-1283
[8]  
BenDor A., 2002, Proceedings of the sixth annual international conference on computational biology, P49, DOI [10.1145/565196.565203, DOI 10.1145/565196.565203]
[9]   Characterizing gene sets with FuncAssociate [J].
Berriz, GF ;
King, OD ;
Bryant, B ;
Sander, C ;
Roth, FP .
BIOINFORMATICS, 2003, 19 (18) :2502-2504
[10]  
Cheng Y., 2000, Proceedings International Conference on Intelligent System,s for Molecular Biology