Approximate Sparse Multinomial Logistic Regression for Classification

被引:27
作者
Kayabol, Koray [1 ]
机构
[1] Gebze Tech Univ, Dept Elect Engn, TR-41400 Kocaeli, Turkey
关键词
Logistics; Hyperspectral imaging; Approximation algorithms; Taylor series; Standards; Estimation; Convergence; Sparse multinomial logistic regression; softmax; hyperspectral images; classification;
D O I
10.1109/TPAMI.2019.2904062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new learning rule for sparse multinomial logistic regression (SMLR). The new rule is the generalization of the one proposed in the pioneering work by Krishnapuram et al. In our proposed method, the parameters of SMLR are iteratively estimated from log-posterior by using some approximations. The proposed update rule provides a faster convergence compared to the state-of the-art methods used for SMLR parameter estimation. The estimated parameters are tested on the pixel-based classification of hyperspectral images. The experimental results on real hyperspectral images show that the classification accuracy of proposed method is also better than those of the state-of-the-art methods.
引用
收藏
页码:490 / 493
页数:4
相关论文
共 12 条
[1]  
Bioucas-Dias J., 2009, Logistic regression via variable splitting and augmented lagrangian tools
[2]   MULTINOMIAL LOGISTIC-REGRESSION ALGORITHM [J].
BOHNING, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (01) :197-200
[3]   MONOTONICITY OF QUADRATIC-APPROXIMATION ALGORITHMS [J].
BOHNING, D ;
LINDSAY, BG .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1988, 40 (04) :641-663
[4]  
Borges JS, 2006, LECT NOTES COMPUT SC, V4142, P700
[5]   Bayesian Hyperspectral Image Segmentation With Discriminative Class Learning [J].
Borges, Janete S. ;
Bioucas-Dias, Jose M. ;
Marcal, Andre R. S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2151-2164
[6]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[7]   Sparse multinomial logistic regression: Fast algorithms and generalization bounds [J].
Krishnapuram, B ;
Carin, L ;
Figueiredo, MAT ;
Hartemink, AJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :957-968
[8]  
Lange K, 2000, J COMPUT GRAPH STAT, V9, P1, DOI 10.2307/1390605
[9]   Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3947-3960
[10]  
Nasrabadi N. M., 2007, Springer google schola, V16, P49901, DOI [10.1117/1.2819119, DOI 10.18637/JSS.V017.B05, 10.5555/1162264]