An Array Database Approach for Earth Observation Data Management and Processing

被引:13
作者
Tan, Zhenyu [1 ]
Yue, Peng [2 ,3 ]
Gong, Jianya [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[3] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Hubei, Peoples R China
来源
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION | 2017年 / 6卷 / 07期
基金
中国国家自然科学基金;
关键词
Earth Observation; multidimensional array; array database; SciDB; Big Data; forest fire simulation; CHALLENGES; WEB;
D O I
10.3390/ijgi6070220
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few years, Earth Observation (EO) has been continuously generating much spatiotemporal data that serves for societies in resource surveillance, environment protection, and disaster prediction. The proliferation of EO data poses great challenges in current approaches for data management and processing. Nowadays, the Array Database technologies show great promise in managing and processing EO Big Data. This paper suggests storing and processing EO data as multidimensional arrays based on state-of-the-art array database technologies. A multidimensional spatiotemporal array model is proposed for EO data with specific strategies for mapping spatial coordinates to dimensional coordinates in the model transformation. It allows consistent query semantics in databases and improves the in-database computing by adopting unified array models in databases for EO data. Our approach is implemented as an extension to SciDB, an open-source array database. The test shows that it gains much better performance in the computation compared with traditional databases. A forest fire simulation study case is presented to demonstrate how the approach facilitates the EO data management and in-database computation.
引用
收藏
页数:18
相关论文
共 35 条
  • [1] Aiordachioaie A, 2010, LECT NOTES COMPUT SC, V6187, P160, DOI 10.1007/978-3-642-13818-8_13
  • [2] [Anonymous], 2014, SCI WORLD J
  • [3] Appel M., 2016, P EGU GEN ASS C VIEN, V18, P11780
  • [4] Baumann P., 1998, SIGMOD Record, V27, P575, DOI 10.1145/276305.276386
  • [5] Baumann P., 2012, P 20 INT C ADV GEOGR, P71
  • [6] Baumann P., 2010, P INT C DAT THEOR AP
  • [7] Big Data Analytics for Earth Sciences: the EarthServer approach
    Baumann, Peter
    Mazzetti, Paolo
    Ungar, Joachim
    Barbera, Roberto
    Barboni, Damiano
    Beccati, Alan
    Bigagli, Lorenzo
    Boldrini, Enrico
    Bruno, Riccardo
    Calanducci, Antonio
    Campalani, Piero
    Clements, Oliver
    Dumitru, Alex
    Grant, Mike
    Herzig, Pasquale
    Kakaletris, George
    Laxton, John
    Koltsida, Panagiota
    Lipskoch, Kinga
    Mahdiraji, Alireza Rezaei
    Mantovani, Simone
    Merticariu, Vlad
    Messina, Antonio
    Misev, Dimitar
    Natali, Stefano
    Nativi, Stefano
    Oosthoek, Jelmer
    Pappalardo, Marco
    Passmore, James
    Rossi, Angelo Pio
    Rundo, Francesco
    Sen, Marcus
    Sorbera, Vittorio
    Sullivan, Don
    Torrisi, Mario
    Trovato, Leonardo
    Veratelli, Maria Grazia
    Wagner, Sebastian
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (01) : 3 - 29
  • [8] Brown P., 2015, P NEW ENGL DAT DAY 2
  • [9] Brown P.G., 2010, P 2010 ACM SIGMOD IN, P963, DOI DOI 10.1145/1807167.1807271
  • [10] A Demonstration of SciDB: A Science-Oriented DBMS
    Cudre-Mauroux, P.
    Kimura, H.
    Lim, K. -T.
    Rogers, J.
    Simakov, R.
    Soroush, E.
    Velikhov, P.
    Wang, D. L.
    Balazinska, M.
    Becla, J.
    DeWitt, D.
    Heath, B.
    Maier, D.
    Madden, S.
    Patel, J.
    Stonebraker, M.
    Zdonik, S.
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2009, 2 (02): : 1534 - 1537