Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs)

被引:165
作者
Bangari, Viraj [1 ]
Marquez, Bicky A. [1 ]
Miller, Heidi B. [1 ]
Tait, Alexander N. [2 ,3 ]
Nahmias, Mitchell A. [2 ]
de Lima, Thomas Ferreira [2 ]
Peng, Hsuan-Tung [2 ]
Prucnal, Paul R. [2 ]
Shastri, Bhavin J. [1 ,2 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON KL7 3N6, Canada
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] NIST, Phys Measurement Lab, Boulder, CO 80305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Deep learning; machine learning; neuromorphic photonics; photonic neural networks; convolutional neural network (CNN); SILICON;
D O I
10.1109/JSTQE.2019.2945540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional Neural Networks (CNNs) are powerful and highly ubiquitous tools for extracting features from large datasets for applications such as computer vision and natural language processing. However, a convolution is a computationally expensive operation in digital electronics. In contrast, neuromorphic photonic systems, which have experienced a recent surge of interest over the last few years, propose higher bandwidth and energy efficiencies for neural network training and inference. Neuromorphic photonics exploits the advantages of optical electronics, including the ease of analog processing, and busing multiple signals on a single waveguide at the speed of light. Here, we propose a Digital Electronic and Analog Photonic (DEAP) CNN hardware architecture that has potential to be 2.8 to 14 times faster while using almost 25% less energy than current state-of-the-art graphical processing units (GPUs).
引用
收藏
页数:13
相关论文
共 50 条
[41]  
Tait A. N., 2018, THESIS
[42]   Silicon Photonic Modulator Neuron [J].
Tait, Alexander N. ;
de Lima, Thomas Ferreira ;
Nahmias, Mitchell A. ;
Miller, Heidi B. ;
Peng, Hsuan-Tung ;
Shastri, Bhavin J. ;
Prucnal, Paul R. .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[43]   Feedback control for microring weight banks [J].
Tait, Alexander N. ;
Jayatilleka, Hasitha ;
de Lima, Thomas Ferreira ;
Ma, Philip Y. ;
Nahmias, Mitchell A. ;
Shastri, Bhavin J. ;
Shekhar, Sudip ;
Chrostowski, Lukas ;
Prucnal, Paul R. .
OPTICS EXPRESS, 2018, 26 (20) :26422-26443
[44]   Microring Weight Banks [J].
Tait, Alexander N. ;
Wu, Allie X. ;
de Lima, Thomas Ferreira ;
Zhou, Ellen ;
Shastri, Bhavin J. ;
Nahmias, Mitchell A. ;
Prucnal, Paul R. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (06) :312-325
[45]   Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing [J].
Tait, Alexander N. ;
Nahmias, Mitchell A. ;
Shastri, Bhavin J. ;
Prucnal, Paul R. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (21) :4029-4041
[46]   Silicon microring resonators [J].
Tan, Ying ;
Dai, Daoxin .
JOURNAL OF OPTICS, 2018, 20 (05)
[47]   Experimental demonstration of reservoir computing on a silicon photonics chip [J].
Vandoorne, Kristof ;
Mechet, Pauline ;
Van Vaerenbergh, Thomas ;
Fiers, Martin ;
Morthier, Geert ;
Verstraeten, David ;
Schrauwen, Benjamin ;
Dambre, Joni ;
Bienstman, Peter .
NATURE COMMUNICATIONS, 2014, 5
[48]  
Wang N., 2018, ADV NEURAL INFORM PR, P7686
[49]   Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing [J].
Zhang, Fangzheng ;
Gao, Bindong ;
Ge, Xiaozhong ;
Pan, Shilong .
OPTICAL ENGINEERING, 2016, 55 (03)
[50]   A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique [J].
Zheng, Hao ;
Ma, Rui ;
Zhu, Zhangming .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2017, 90 (01) :217-226