Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing

被引:40
作者
Dong, Lin [1 ]
Closson, Andrew B. [1 ]
Jin, Congran [1 ]
Nie, Yuan [1 ]
Cabe, Andrew [2 ]
Escobedo, Danny [2 ]
Huang, Shicheng [1 ]
Trase, Ian [1 ]
Xu, Zhe [1 ]
Chen, Zi [1 ]
Feldman, Marc D. [2 ]
Zhang, John X. J. [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Univ Texas Hlth Sci Ctr San Antonio, Dept Med, Div Cardiol, San Antonio, TX 78229 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
blood pressure sensing; cardiac energy harvesting; implantable medical devices; porous P(VDF-TrFE); IN-VIVO; GENERATOR; LONGEVITY; FREQUENCY;
D O I
10.1002/adhm.202000053
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomedical self-sustainable energy generation represents a new frontier of power solution for implantable biomedical devices (IMDs), such as cardiac pacemakers. However, almost all reported cardiac energy harvesting designs have not yet reached the stage of clinical translation. A major bottleneck has been the need of additional surgeries for the placements of these devices. Here, integrated piezoelectric-based energy harvesting and sensing designs are reported, which can be seamlessly incorporated into existing IMDs for ease of clinical translation. In vitro experiments validate the energy harvesting process by simulating the bending and twisting motion during heart cycle. Clinical translation is demonstrated in four porcine hearts in vivo under various conditions. Energy harvesting strategy utilizes pacemaker leads as a means of reducing the reliance on batteries and demonstrates the charging ability for extending the lifetime of a pacemaker battery by 20%, which provides a promising self-sustainable energy solution for IMDs. The additional self-powered blood pressure sensing is discussed, and the reported results demonstrate the potential in alerting arrhythmias by monitoring the right ventricular pressure variations. This combined cardiac energy harvesting and blood pressure sensing strategy provides a multifunctional, transformative while practical power and diagnosis solution for cardiac pacemakers and next generation of IMDs.
引用
收藏
页数:12
相关论文
共 49 条
[11]   In vivo cardiac power generation enabled by an integrated helical piezoelectric pacemaker lead [J].
Dong, Lin ;
Closson, Andrew B. ;
Oglesby, Meagan ;
Escobedo, Danny ;
Han, Xiaomin ;
Nie, Yuan ;
Huang, Shicheng ;
Feldman, Marc D. ;
Chen, Zi ;
Zhang, John X. J. .
NANO ENERGY, 2019, 66
[12]   Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications [J].
Dong, Lin ;
Closso, Andrew B. ;
Jin, Congran ;
Tras, Ian ;
Chen, Zi ;
Zhang, John X. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10)
[13]   Piezoelectric Buckled Beam Array on a Pacemaker Lead for Energy Harvesting [J].
Dong, Lin ;
Wen, Chunsheng ;
Liu, Yin ;
Xu, Zhe ;
Closson, Andrew B. ;
Han, Xiaomin ;
Escobar, Gladys Patricia ;
Oglesby, Meagan ;
Feldman, Marc ;
Chen, Zi ;
Zhang, John X. J. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01)
[14]   Flexible Porous Piezoelectric Cantilever on a Pacemaker Lead for Compact Energy Harvesting [J].
Dong, Lin ;
Han, Xiaomin ;
Xu, Zhe ;
Closson, Andrew B. ;
Liu, Yin ;
Wen, Chunsheng ;
Liu, Xi ;
Escobar, Gladys Patricia ;
Oglesby, Meagan ;
Feldman, Marc ;
Chen, Zi ;
Zhang, John X. J. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01)
[15]   Resonant frequency tuning of electroactive polymer membranes via an applied bias voltage [J].
Dong, Lin ;
Grissom, Michael D. ;
Safwat, Tahzib ;
Prasad, M. G. ;
Fisher, Frank T. .
SMART MATERIALS AND STRUCTURES, 2018, 27 (11)
[16]   Application of mechanical stretch to tune the resonance frequency of hyperelastic membrane-based energy harvesters [J].
Dong, Lin ;
Grissom, Michael D. ;
Prasad, M. G. ;
Fisher, Frank T. .
SENSORS AND ACTUATORS A-PHYSICAL, 2016, 252 :165-173
[17]   Resonant frequency of mass-loaded membranes for vibration energy harvesting applications [J].
Dong, Lin ;
Grissom, Michael ;
Fisher, Frank T. .
AIMS ENERGY, 2015, 3 (03) :344-359
[18]   Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting [J].
Dong, Lin ;
Prasad, M. G. ;
Fisher, Frank T. .
SMART MATERIALS AND STRUCTURES, 2016, 25 (06)
[19]   Ampere Hour as a Predictor of Cardiac Resynchronization Defibrillator Pulse Generator Battery Longevity: A Multicenter Study [J].
Ellis, Christopher R. ;
Dickerman, Deanna I. ;
Orton, Jodi M. ;
Hassan, Sohail ;
Good, Eric D. ;
Okabe, Toshimasa ;
Andriulli, John A. ;
Quan, Kara J. ;
Greenspon, Arnold J. .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2016, 39 (07) :658-668
[20]   Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester [J].
Hwang, Geon-Tae ;
Park, Hyewon ;
Lee, Jeong-Ho ;
Oh, SeKwon ;
Park, Kwi-Il ;
Byun, Myunghwan ;
Park, Hyelim ;
Ahn, Gun ;
Jeong, Chang Kyu ;
No, Kwangsoo ;
Kwon, HyukSang ;
Lee, Sang-Goo ;
Joung, Boyoung ;
Lee, Keon Jae .
ADVANCED MATERIALS, 2014, 26 (28) :4880-+