Well-balanced finite volume evolution Galerkin methods for the shallow water equations with source terms

被引:10
作者
Lukácová-Medvid'ová, M [1 ]
Vlk, Z [1 ]
机构
[1] Tech Univ Hamburg, Arbeitsbereich Math, D-2100 Hamburg, Germany
关键词
well-balanced methods; finite-volume evolution Galerkin schemes; shallow water equations; truly multi-dimensional finite-volume methods;
D O I
10.1002/fld.855
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The goal of this paper is to present a new well-balanced genuinely multi-dimensional high-resolution finite volume evolution Galerkin method for systems of balance laws. The derivation of the method will be illustrated for the shallow water equation with geometrical source term modelling the bottom topography. The results can be generalized to more complex systems of balance laws. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1165 / 1171
页数:7
相关论文
共 10 条
[1]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[2]   A MULTIDIMENSIONAL GENERALIZATION OF ROE FLUX DIFFERENCE SPLITTER FOR THE EULER EQUATIONS [J].
DECONINCK, H ;
ROE, PL ;
STRUIJS, R .
COMPUTERS & FLUIDS, 1993, 22 (2-3) :215-222
[3]   A well-balanced scheme for the numerical processing of source terms in hyperbolic equations [J].
Greenberg, JM ;
Leroux, AY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :1-16
[4]   Wave propagation algorithms for multidimensional hyperbolic systems [J].
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :327-353
[5]   Finite volume evolution Galerkin methods for nonlinear hyperbolic systems [J].
Lukácová-Medvid'ová, M ;
Saibertová, J ;
Warnecke, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) :533-562
[6]   Finite volume evolution Galerkin methods for Euler equations of gas dynamics [J].
Lukácová-Medvid'ová, M ;
Morton, KW ;
Warnecke, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (3-4) :425-434
[7]   Finite volume evolution Galerkin methods for hyperbolic systems [J].
Lukácová-Medvidová, M ;
Morton, KW ;
Warnecke, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01) :1-30
[8]  
LUKACOVAMEDVIDO.M, IN PRESS WELL BALANC
[9]  
LUKACOVAMEDVIDO.M, 2004, UNPUB STABILITY EVOL
[10]   The MoT-ICE: A new high-resolution wave-propagation algorithm for multidimensional systems of conservation laws based on Fey's Method of Transport [J].
Noelle, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 164 (02) :283-334