Simulation analysis of MHD hybrid Cu-Al2O3/H2O nanofluid flow with heat generation through a porous media

被引:56
|
作者
Ali, Kashif [1 ]
Ahmad, Sohail [2 ]
Nisar, Kottakkaran Sooppy [3 ]
Faridi, Aftab Ahmed [4 ]
Ashraf, Muhammad [2 ]
机构
[1] Muhammad Nawaz Sharif Univ Engn & Technol, Dept Basic Sci & Humanities, Multan, Pakistan
[2] Bahauddin Zakariya Univ, Ctr Adv Studies Pure & Appl Math CASPAM, Multan 60800, Pakistan
[3] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Al Kharj, Saudi Arabia
[4] Islamia Univ Bahawalpur, Dept Math, Bahawalpur, Pakistan
关键词
heat generation; heat transfer; hybrid nanofluid; nanofluid; porous media; STAGNATION-POINT FLOW; STRETCHING SHEET; AL2O3/WATER NANOFLUID; CU;
D O I
10.1002/er.7016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hybrid nanoliquids comprise of better physical strength, mechanical resistance, thermal conductivity, and chemical stability as equated to individual nanoliquids. The present work investigates the MHD laminar flow, containing hybrid nanoparticles, with heat transfer phenomenon over a stretching sheet immersed in a porous medium. The effect of induced magnetic field has also been taken into account. The flow model PDEs are rehabilitated into ordinary ones using a persuasive tool of similarity variables. The analogous system of dimensionless equations alongside the boundary conditions is numerically treated with the Successive-Over-Relaxation (SOR) technique. Flow and heat transfer aspects of both pure and hybrid nanofluids are examined for the preeminent parameters. Our outcomes are associated with the previously accomplished experimental and numerical results, and found to be in a good agreement with them. As a major outcome of the study, it has been noted that, apart from their well-reported thermal characteristics, hybrid nanofluids are capable of raising the shear stress to remarkably higher levels (upto 57% in some cases). Therefore, such fluids must be used with caution in applications where a control on the shear stress is required.
引用
收藏
页码:19165 / 19179
页数:15
相关论文
共 50 条
  • [1] MHD FLOW OF Cu-Al2O3/WATER HYBRID NANOFLUID THROUGH A POROUS MEDIA
    Ahmad, Sohail
    Ali, Kashif
    Ashraf, Muhammad
    JOURNAL OF POROUS MEDIA, 2021, 24 (07) : 61 - 73
  • [2] A Novel Hybrid Model for Cu-Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels
    Khan, Umar
    Adnan
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    Baleanu, Dumitru
    Ilyas Khan
    Nisar, Kottakkaran Sooppy
    ENERGIES, 2020, 13 (07)
  • [3] A numerical study on MHD Cu-Al2O3/H2O hybrid nanofluid with Hall current and cross-diffusion effect
    Rath, Chinmoy
    Nayak, Anita
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [4] Oblique Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O Hybrid Nanofluid
    Yahaya, Rusya Iryanti
    Arifin, Norihan Md
    Nazar, Roslinda Mohd
    Pop, Ioan
    SAINS MALAYSIANA, 2021, 50 (10): : 3139 - 3152
  • [5] Heat transfer performance of magnetohydrodynamic multiphase nanofluid flow of Cu-Al2O3/H2O over a stretching cylinder
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ganie, Abdul Hamid
    Shah, Rasool
    OPEN PHYSICS, 2023, 21 (01):
  • [6] Magnetized Flow of Cu + Al2O3 + H2O Hybrid Nanofluid in Porous Medium: Analysis of Duality and Stability
    Lund, Liaquat Ali
    Omar, Zurni
    Dero, Sumera
    Khan, Ilyas
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    SYMMETRY-BASEL, 2020, 12 (09):
  • [7] Shape factor effect of radiative Cu-Al2O3/H2O hybrid nanofluid flow towards an EMHD plate
    Khashi'ie, Najiyah Safwa
    Arifin, Norihan Md
    Sheremet, Mikhail
    Pop, Ioan
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [8] Unsteady MHD radiative-dissipative flow of Cu-Al2O3/H2O hybrid nanofluid past a stretching sheet with slip and convective conditions: A regression analysis
    Kumbhakar, Bidyasagar
    Nandi, Susmay
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 563 - 587
  • [9] Transverse MHD flow of Al2O3-Cu/H2O hybrid nanofluid with active radiation: A novel hybrid model
    Gangadhar, Kotha
    Bhargavi, Dhanekula Naga
    Kannan, Thangavelu
    Venkata Subba Rao, Munagala
    Chamkha, Ali J.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [10] An investigation of the MHD Cu-Al2O3/H2O hybrid-nanofluid in a porous medium across a vertically stretching cylinder incorporating thermal stratification impact
    Paul, Ashish
    Nath, Jintu Mani
    Das, Tusar Kanti
    JOURNAL OF THERMAL ENGINEERING, 2023, 9 (03): : 799 - 810