Adaptive Regularization of Infrared Image Super-resolution Reconstruction

被引:0
|
作者
Dai Shao-Sheng [1 ]
Xiang Hai-Yan [1 ]
Du Zhi-Hui [1 ]
Liu Jin-Song [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Signal & Informat Proc CqKLS&IP, Chongqing 400065, Peoples R China
来源
2014 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT | 2014年
关键词
L1; norm; super-resolution; infrared image reconstruction; adjust regularization parameter adaptively;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For conventional reconstruction algorithms, regularization parameter is randomly selected and image reconstruction cannot achieve the desired display effect. Thus this paper presents a simple and efficient adaptive regularization technique of infrared image super-resolution reconstruction algorithm that combines L1-norm with the total variation regularization. Regular terms select regularization parameters adaptively based on the difference between the estimated low-resolution images and the actual ones. The experiment results show that the contrast of infrared images reconstructed has increased to 1.4 times as the traditional algorithm and the image edge effectively has been enhanced with the signal-to-noise ratio improved dramatically.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Super-resolution reconstruction of image sequences
    Elad, M
    Feuer, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (09) : 817 - 834
  • [22] PIRN: Phase Invariant Reconstruction Network for infrared image super-resolution
    Dan, Jun
    Jin, Tao
    Chi, Hao
    Liu, Mushui
    Yu, Jiawang
    Cao, Keying
    Yang, Xinjing
    Zhao, Luo
    Xie, Haoran
    NEUROCOMPUTING, 2024, 599
  • [23] Image Super-Resolution Reconstruction based on Adaptive Gradient Field Sharpening
    Li, Ting
    Papamichalis, Panos E.
    2013 18TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2013,
  • [24] Performance of reconstruction-based super-resolution with regularization
    Shen, Minmin
    Wang, Ci
    Xue, Ping
    Lin, Weisi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (07) : 640 - 650
  • [25] Super-Resolution Image Reconstruction with Edge Adaptive Weight in Video Sequence
    Kwon, Ji Yong
    Yoo, Du Sic
    Park, Jong Hyun
    Park, Se Hyeok
    Kang, Moon Gi
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS X AND PARALLEL PROCESSING FOR IMAGING APPLICATIONS II, 2012, 8295
  • [26] A MAP regularization super-resolution image reconstruction method based on improved immune algorithm
    Lei, Hong
    Han, Jianwen
    INFORMATION TECHNOLOGY AND INDUSTRIAL ENGINEERING, VOLS 1 & 2, 2014, : 129 - 136
  • [27] Single-image super-resolution reconstruction using dark channel regularization network
    Zhang, Di
    He, Jiazhong
    Zhao, Yun
    Zhang, Huailing
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (02) : 431 - 438
  • [28] Single-image super-resolution reconstruction using dark channel regularization network
    Di Zhang
    Jiazhong He
    Yun Zhao
    Huailing Zhang
    Signal, Image and Video Processing, 2021, 15 : 431 - 438
  • [29] Research on Super-Resolution Image Reconstruction Based on Low-Resolution Infrared Sensor
    Li, Yubing
    Zhao, Kun
    Ren, Fei
    Wang, Biao
    Zhao, Jizhong
    IEEE ACCESS, 2020, 8 : 69186 - 69199
  • [30] Spatially Varying Regularization of Image Sequences Super-Resolution
    An, Yaozu
    Lu, Yao
    Zhai, Zhengang
    COMPUTER VISION - ACCV 2009, PT III, 2010, 5996 : 475 - 484