Color Image Segmentation by NSGA-II based ParaOptiMUSIG Activation Function

被引:2
作者
De, Sourav [1 ]
Bhattacharyya, Siddhartha [2 ]
Chakraborty, Susanta [3 ]
机构
[1] Univ Burdwan, Dept CSE IT, Burdwan 713104, W Bengal, India
[2] RCC Inst Informat Technol, Dept IT, Kolkata 700015, India
[3] Bengal Engn & Sci Univ, Dept CST, Howrah 711103, India
来源
2013 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND RESEARCH ADVANCEMENT (ICMIRA 2013) | 2013年
关键词
Segmentation; Optimization; MUSIG; NSGA-II;
D O I
10.1109/ICMIRA.2013.27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on different criteria any real life problem generates a set of alternative solutions instead of a single optimal solution. Color image segmentation by single objective based parallel optimized MUSIG (ParaOptiMUSIG) activation function may or may not render better solutions for different objective functions. To overcome this problem, a non-dominated sorting genetic algorithm-II (NSGA-II) based ParaOptiMUSIG activation function is proposed in this article to segment color images. Segmentation is achieved using optimized class responses from the image content with a parallel self organizing neural network (PSONN) architecture. Some standard objective functions which are used to assess the quality of the segmented images forms the NSGA-II based image segmentation method.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 941OPTICS U VAAS DEP
[2]  
Bhattacharyya Siddhartha, 2008, Foundations of Computing and Decision Sciences, V33, P131
[3]  
Bhattacharyya S., 2007, INT J COMPUTER SCI, V2, P09
[4]   Color image segmentation using parallel OptiMUSIG activation function [J].
De, Sourav ;
Bhattacharyya, Siddhartha ;
Chakraborty, Susanta .
APPLIED SOFT COMPUTING, 2012, 12 (10) :3228-3236
[5]   Efficient grey-level image segmentation using an optimised MUSIG (OptiMUSIG) activation function [J].
De, Sourav ;
Bhattacharyya, Siddhartha ;
Dutta, Paramartha .
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2011, 26 (01) :1-39
[6]  
Deb K., 2001, Multi-objective Optimization Using Evolutionary Algorithms
[7]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044
[8]   A multiobjective approach to MR brain image segmentation [J].
Mukhopadhyay, Anirban ;
Maulik, Ujjwal .
APPLIED SOFT COMPUTING, 2011, 11 (01) :872-880
[9]  
Zhang H, 2004, P SOC PHOTO-OPT INS, V5307, P38