NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function

被引:49
作者
Montezano, Augusto C. [1 ]
Camargo, Livia De Lucca [1 ]
Persson, Patrik [1 ]
Rios, Francisco J. [1 ]
Harvey, Adam P. [1 ]
Anagnostopoulou, Aikaterini [1 ]
Palacios, Roberto [1 ]
Gandara, Ana Caroline P. [1 ,2 ]
Alves-Lopes, Rheure [1 ]
Neves, Karla B. [1 ]
Dulak-Lis, Maria [1 ]
Holterman, Chet E. [3 ]
de Oliveira, Pedro Lagerblad [2 ]
Graham, Delyth [1 ]
Kennedy, Christopher [3 ]
Touyz, Rhian M. [1 ]
机构
[1] Univ Glasgow, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland
[2] Univ Fed Rio de Janeiro, Lab Bioquim Artropodes Hematafagos, Inst Bioquim Med Leopoldo De Meis, Programa Biol Mol & Biotecnol, Rio De Janeiro, Brazil
[3] Univ Ottawa, Ottawa Hosp Res Inst, Kidney Res Ctr, Ottawa, ON, Canada
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2018年 / 7卷 / 12期
关键词
cell signaling; contraction; vascular biology; OXIDATIVE STRESS; HYPERTENSION; ACTIVATION; EXPRESSION; PATHOPHYSIOLOGY; PHOSPHORYLATION; SENSITIZATION; DYSFUNCTION; MECHANISM; VARIANTS;
D O I
10.1161/JAHA.118.009388
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Methods and Results-Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+](i), increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions-Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.
引用
收藏
页数:33
相关论文
共 52 条
[11]   Calcium-Dependent NOX5 Nicotinamide Adenine Dinucleotide Phosphate Oxidase Contributes to Vascular Oxidative Stress in Human Coronary Artery Disease [J].
Guzik, Tomasz J. ;
Chen, Wei ;
Gongora, Maria C. ;
Guzik, Bartlomiej ;
Lob, Heinrich E. ;
Mangalat, Deepa ;
Hoch, Nyssa ;
Dikalov, Sergey ;
Rudzinski, Pawel ;
Kapelak, Boguslaw ;
Sadowski, Jerzy ;
Harrison, David G. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (22) :1803-1809
[12]   Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis [J].
Harvey, Adam P. ;
Montezano, Augusto C. ;
Hood, Katie Y. ;
Lopes, Rheure A. ;
Rios, Francisco ;
Ceravolo, Graziela ;
Graham, Delyth ;
Touyz, Rhian M. .
LIFE SCIENCES, 2017, 179 :110-119
[13]   Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression [J].
Holterman, Chet E. ;
Thibodeau, Jean-Francois ;
Towaij, Chelsea ;
Gutsol, Alex ;
Montezano, Augusto C. ;
Parks, Robin J. ;
Cooper, Mark E. ;
Touyz, Rhian M. ;
Kennedy, Christopher R. J. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2014, 25 (04) :784-797
[14]   Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells Implications in Pulmonary Arterial Hypertension [J].
Hood, Katie Y. ;
Montezano, Augusto C. ;
Harvey, Adam P. ;
Nilsen, Margaret ;
MacLean, Margaret R. ;
Touyz, Rhian M. .
HYPERTENSION, 2016, 68 (03) :796-+
[15]   Nox4 B-loop Creates an Interface between the Transmembrane and Dehydrogenase Domains [J].
Jackson, Heather M. ;
Kawahara, Tsukasa ;
Nisimoto, Yukio ;
Smith, Susan M. E. ;
Lambeth, J. David .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (14) :10281-10290
[16]   Novel mechanism of activation of NADPH oxidase 5 - Calcium sensitization via phosphorylation [J].
Jagnandan, Davin ;
Church, Jarrod E. ;
Banfi, Botond ;
Stuehr, Dennis J. ;
Marrero, Mario B. ;
Fulton, David J. R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (09) :6494-6507
[17]   Nox5 mediates PDGF-induced proliferation in human aortic smooth muscle cells [J].
Jay, Desmond B. ;
Papaharalambus, Christopher A. ;
Seidel-Rogol, Bonnie ;
Dikalova, Anna E. ;
Lassegue, Bernard ;
Griendling, Kathy K. .
FREE RADICAL BIOLOGY AND MEDICINE, 2008, 45 (03) :329-335
[18]   NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy [J].
Jha, Jay C. ;
Banal, Claudine ;
Okabe, Jun ;
Gray, Stephen P. ;
Hettige, Thushan ;
Chow, Bryna S. M. ;
Thallas-Bonke, Vicki ;
De Vos, Lisanne ;
Holterman, Chet E. ;
Coughlan, Melinda T. ;
Power, David A. ;
Skene, Alison ;
Ekinci, Elif I. ;
Cooper, Mark E. ;
Touyz, Rhian M. ;
Kennedy, Chris R. ;
Jandeleit-Dahm, Karin .
DIABETES, 2017, 66 (10) :2691-2703
[19]   Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes [J].
Kawahara, Tsukasa ;
Lambeth, J. David .
BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)
[20]   Nox5 Forms a Functional Oligomer Mediated by Self-Association of Its Dehydrogenase Domain [J].
Kawahara, Tsukasa ;
Jackson, Heather M. ;
Smith, Susan M. E. ;
Simpson, Paul D. ;
Lambeth, J. David .
BIOCHEMISTRY, 2011, 50 (12) :2013-2025