Naphthalene-fused octacyclic electron-donating central core constructs non-fullerene acceptors for organic solar cells

被引:6
作者
Ming, Ruijie [1 ,2 ]
Li, Guanghao [1 ]
Xu, Chunyu [3 ]
Luo, Zhenghui [2 ]
Ning, Weimin [1 ]
Zhong, Cheng [1 ]
Liu, Xiaohui [2 ]
Ye, Changqing [4 ]
Zhang, Fujun [3 ]
Yang, Chuluo [1 ,2 ]
机构
[1] Wuhan Univ, Dept Chem, Renmin Hosp, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[3] Beijing Jiaotong Univ, Minist Educ, Key Lab Luminescence & Opt Informat, Beijing 100044, Peoples R China
[4] Suzhou Univ Sci & Technol, Suzhou Key Lab Flexible & Printing Optoelect Mat, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金;
关键词
Naphthalene; Linear configuration; Terminal groups; Organic solar cells; SMALL-MOLECULE ACCEPTORS; PERFORMANCE; EFFICIENCY; ENABLES;
D O I
10.1016/j.cej.2021.130618
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To develop new central core structure, we designed and synthesized a naphthalene-fused octacyclic electron-rich block, named as NITT. With the NITT ladder-type core and two distinct terminal groups (IC-2F and CPTCN-Cl), two novel A-D-A-type non-fullerene acceptors (NFAs), namely NITT-BF and NITT-ThCl, were constructed. Two NFAs exhibit broad and intense absorption and high electron mobility due to the coplanar architecture. When blended with polymer donor PM6, NITT-BF-based device acquires more favorable morphology, higher exciton dissociation and charge collection efficiency, and higher and more balanced hole/electron mobilities, resulting in the significantly improved short-circuit current density (JSC) of 18.08 mA cm(-2) and fill factor (FF) of 72.38%. Additionally, both NITT-BF- and NITT-ThCl-based devices deliver very high open-circuit voltages (VOCs) (0.94 V for NITT-BF-based device and 0.97 V for NITT-ThCl-based device). Therefore, PM6:NITT-BF-based device yields an optimal PCE of up to 12.30%, which is much higher than that of PM6:NITT-ThCl-based device (9.58%). Notably, the high PCE of 12.30% is one of the best values for naphthalene-fused NFAs in organic solar cells (OSCs). These results indicate that the linear ladder-type NITT is a promising electron-donating core for constructing high-performance NFAs and terminal strategy is a good way to further boost the photovoltaic performance of OSCs.
引用
收藏
页数:8
相关论文
共 52 条
[1]   2D Side-Chain Engineered Asymmetric Acceptors Enabling Over 14% Efficiency and 75% Fill Factor Stable Organic Solar Cells [J].
Cao, Jinru ;
Wang, Hongtao ;
Qu, Shenya ;
Yu, Jiangsheng ;
Yang, Linqiang ;
Zhang, Zhuohan ;
Du, Fuqiang ;
Tang, Weihua .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[2]   A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells [J].
Chen, Tsung-Wei ;
Peng, Kuan-Lin ;
Lin, You-Wei ;
Su, Yi-Jia ;
Ma, Ko-Jui ;
Hong, Ling ;
Chang, Chia-Chih ;
Hou, Jianhui ;
Hsu, Chain-Shu .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (03) :1131-1137
[3]   Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics [J].
Cheng, Pei ;
Yang, Yang .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (06) :1218-1228
[4]   Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells [J].
Cheng, Pei ;
Yan, Cenqi ;
Wu, Yang ;
Wang, Jiayu ;
Qin, Meng ;
An, Qiaoshi ;
Cao, Jiamin ;
Huo, Lijun ;
Zhang, Fujun ;
Ding, Liming ;
Sun, Yanming ;
Ma, Wei ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2016, 28 (36) :8021-8028
[5]   Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIR-Absorbing Electron Acceptors [J].
Dai, Shuixing ;
Li, Tengfei ;
Wang, Wei ;
Xiao, Yiqun ;
Lau, Tsz-Ki ;
Li, Zeyuan ;
Liu, Kuan ;
Lu, Xinhui ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2018, 30 (15)
[6]   A naphthodithiophene-based nonfullerene acceptor for high-performance polymer solar cells with a small energy loss [J].
Dong, Xingliang ;
Guo, Qing ;
Liu, Qi ;
Zhu, Lei ;
Guo, Xia ;
Liu, Feng ;
Zhang, Maojie .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (19) :6513-6520
[7]   Synergistic Modifications of Side Chains and End Groups in Small Molecular Acceptors for High Efficient Non-Fullerene Organic Solar Cells [J].
Feng, Huanran ;
Yi, Yuan-Qiu-Qiang ;
Ke, Xin ;
Zhang, Yamin ;
Wan, Xiangjian ;
Li, Chenxi ;
Chen, Yongsheng .
SOLAR RRL, 2018, 2 (08)
[8]   Synthesis of titanium silicalite-1 with high titanium content and its catalytic performance of propylene epoxidation [J].
Gao, Jiang ;
Gao, Lin ;
Zhang, Baoqiang ;
Wang, Haoyu ;
Ma, Weihua .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 99 (S1) :S596-S604
[9]   A Critical Review on Efficient Thick-Film Organic Solar Cells [J].
Gao, Jinhua ;
Wang, Jian ;
Xu, Chunyu ;
Hu, Zhenghao ;
Ma, Xiaoling ;
Zhang, Xiaoli ;
Niu, Lianbin ;
Zhang, Jian ;
Zhang, Fujun .
SOLAR RRL, 2020, 4 (11)
[10]   Dithieno[3,2-b:2MODIFIER LETTER PRIME,3MODIFIER LETTER PRIME-d]pyrrol-Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogen-Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology [J].
Gao, Wei ;
Liu, Tao ;
Sun, Rui ;
Zhang, Guangye ;
Xiao, Yiqun ;
Ma, Ruijie ;
Zhong, Cheng ;
Lu, Xinhui ;
Min, Jie ;
Yan, He ;
Yang, Chuluo .
ADVANCED SCIENCE, 2020, 7 (05)