Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions

被引:40
作者
Chainais-Hillairet, Claire [1 ]
Droniou, Jerome [2 ]
机构
[1] Univ Blaise Pascal, UMR CNRS 6620, Math Lab, F-63177 Aubiere, France
[2] Univ Montpellier 2, UMR CNRS 5149, Dept Math, CC 051, F-34095 Montpellier 5, France
关键词
convection-diffusion equations; Neumann boundary conditions; finite-volume schemes; numerical analysis; DIFFUSION EQUATIONS; ERROR; CONVERGENCE;
D O I
10.1093/imanum/drp009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a convective-diffusive elliptic problem with Neumann boundary conditions. The presence of the convective term results in noncoercivity of the continuous equation and, because of the boundary conditions, the equation has a nontrivial kernel. We discretize this equation with finite-volume techniques and in a general framework that allows us to consider several treatments of the convective term, namely, via a centred scheme, an upwind scheme (widely used in fluid mechanics problems) or a Scharfetter-Gummel scheme (common to semiconductor literature). We prove that these schemes satisfy the same properties as the continuous problem (one-dimensional kernel spanned by a positive function, for instance) and that their kernel and solution converge to the kernel and solution of the partial differential equation. We also present several numerical implementations, studying the effects of the choice of one scheme or the other in the approximation of the solution or the kernel.
引用
收藏
页码:61 / 85
页数:25
相关论文
共 17 条
[1]   A refined Galerkin error and stability analysis for highly indefinite variational problems [J].
Banjai, L. ;
Sauter, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) :37-53
[2]   Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis [J].
Chainais-Hillairet, C ;
Liu, JG ;
Peng, YJ .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :319-338
[3]   Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations [J].
Coudière, Y ;
Gallouët, T ;
Herbin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :767-778
[4]   Non-coercive linear elliptic problems [J].
Droniou, J .
POTENTIAL ANALYSIS, 2002, 17 (02) :181-203
[5]   Finite volume methods for convection-diffusion equations with right-hand side in H-1 [J].
Droniou, J ;
Gallouët, T .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04) :705-724
[6]   Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions [J].
Droniou, Jerome ;
Vazquez, Juan-Luis .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) :413-434
[7]   Study of the Mixed Finite Volume Method for Stokes and Navier-Stokes Equations [J].
Droniou, Jerome ;
Eymard, Robert .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (01) :137-171
[8]   A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems [J].
Eymard, R ;
Fuhrmann, J ;
Gärtner, K .
NUMERISCHE MATHEMATIK, 2006, 102 (03) :463-495
[9]   H-convergence and numerical schemes for elliptic problems [J].
Eymard, R ;
Gallouët, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (02) :539-562
[10]  
Eymard R, 2000, HDBK NUM AN, V7, P713