Liquid as a required catalyst phase for carbon single-walled nanotube growth

被引:103
作者
Harutyunyan, AR
Tokune, T
Mora, E
机构
[1] Honda Res Inst USA Inc, Columbus, OH 43212 USA
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
关键词
D O I
10.1063/1.2005395
中图分类号
O59 [应用物理学];
学科分类号
摘要
The evolution of the iron catalyst during carbon single-walled nanotube growth is studied using calorimetry, temperature-programmed oxidation and Raman measurements. Carbon-induced solid-liquid, and solid-liquid-solid phase transitions of the nanocatalyst during the synthesis were observed. We found that liquid phase is favored for the growth of nanotubes, while the solidification of the catalyst nearly terminates the growth. No growth was observed below the eutectic point, when the catalyst is in solid phase. Our results support a growth mechanism of single-walled carbon nanotubes on liquid catalyst particles. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 30 条
[1]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[2]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[3]  
Chernov A.A., 1984, Modern Crystallography III: Crystal Growth
[4]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[5]   Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition [J].
Cui, H ;
Eres, G ;
Howe, JY ;
Puretkzy, A ;
Varela, M ;
Geohegan, DB ;
Lowndes, DH .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :222-228
[6]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[7]   Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth [J].
Ding, F ;
Rosén, A ;
Bolton, K .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06) :2775-2779
[8]  
Dresselhaus M. S., 2001, Topics in Applied Physics, V80
[9]  
*EPAPS, EAPPLAB056531 EPAPS
[10]   Root-growth mechanism for single-wall carbon nanotubes [J].
Gavillet, J ;
Loiseau, A ;
Journet, C ;
Willaime, F ;
Ducastelle, F ;
Charlier, JC .
PHYSICAL REVIEW LETTERS, 2001, 87 (27) :275504-1