An Application of the Combinatorial Nullstellensatz to a Graph Labelling Problem

被引:18
作者
Hefetz, Dan [1 ]
Saluz, Annina [2 ]
Tran, Huong T. T. [3 ]
机构
[1] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
[3] Inst Math, Hanoi 10307, Vietnam
关键词
Combinatorial Nullstellensatz; graph labelling;
D O I
10.1002/jgt.20466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An antimagic labelling of a graph G with m edges and n vertices is a bijection from the set of edges of G to the set of integers {1, ... ,m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labelling. In N. Hartsfield and G. Ringle, Pearls in Graph Theory, Academic Press, Inc., Boston, 1990, Ringel has conjectured that every simple connected graph, other than K(2), is antimagic. In this article, we prove a special case of this conjecture. Namely, we prove that if G is a graph on n=p(k) vertices, where p is an odd prime and k is a positive integer that admits a C(p)-factor, then it is antimagic. The case p=3 was proved in D. Hefetz, J Graph Theory 50 (2005), 263-272. Our main tool is the combinatorial Nullstellensatz [N. Alon, Combin Probab Comput 8(1-2) (1999), 7-29]. (C) 2009 Wiley Periodicals. Inc. J Graph Theory 65: 70-82, 2010
引用
收藏
页码:70 / 82
页数:13
相关论文
共 11 条
[1]   Dense graphs are antimagic [J].
Alon, N ;
Kaplan, G ;
Lev, A ;
Roditty, Y ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 47 (04) :297-309
[2]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[3]  
Chapman R., 1996, MATH MAG, V69, P121
[4]   Regular Bipartite Graphs Are Antimagic [J].
Cranston, Daniel W. .
JOURNAL OF GRAPH THEORY, 2009, 60 (03) :173-182
[5]  
Gallian J.A., 2009, ELECTRON J COMB, V16, p#DS6
[6]  
GUERON S, 1999, GROSSMAN MEMORIAL MA, V105, P1983
[7]  
Hartsfield N., 1990, Pearls in Graph Theory, P108
[8]   Anti-magic graphs via the Combinatorial NullStellenSatz [J].
Hefetz, D .
JOURNAL OF GRAPH THEORY, 2005, 50 (04) :263-272
[9]   On zero-sum partitions and anti-magic trees [J].
Kaplan, Gil ;
Lev, Arieh ;
Roditty, Yehuda .
DISCRETE MATHEMATICS, 2009, 309 (08) :2010-2014
[10]  
SALUZ A, APPL COMBINATO UNPUB